Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="75">
          <p>
            <s xml:space="preserve">
              <pb file="0146" n="146" rhead="FED. COMMANDINI"/>
            partes d. </s>
            <s xml:space="preserve">in pyramide igitur inſcripta erit quædam figura,
              <lb/>
            ex priſinatibus æqualem altitudinem habentibus cóſtans,
              <lb/>
            ad partes e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altera circumſcripta ad partes d. </s>
            <s xml:space="preserve">Sed unum-
              <lb/>
            quodque eorum priſmatum, quæ in figura inſcripta conti-
              <lb/>
            nentur, æquale eſt priſmati, quod ab eodem fit triangulo in
              <lb/>
            figura circumſcripta: </s>
            <s xml:space="preserve">nam priſma p q priſmati p o eſt æ-
              <lb/>
            quale; </s>
            <s xml:space="preserve">priſma s t æquale priſmati s r; </s>
            <s xml:space="preserve">priſma x y priſmati
              <lb/>
            x u; </s>
            <s xml:space="preserve">priſma η θ priſinati η z; </s>
            <s xml:space="preserve">priſina μ ν priſmati μ λ; </s>
            <s xml:space="preserve">priſ-
              <lb/>
            ma ρ σ priſmati ρ π; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſma φ χ priſinati φ τ æquale. </s>
            <s xml:space="preserve">re-
              <lb/>
            linquitur ergo, ut circumſcripta figura exuperet inſcriptã
              <lb/>
            priſmate, quod baſim habet a b c triangulum, & </s>
            <s xml:space="preserve">axem e f.
              <lb/>
            </s>
            <s xml:space="preserve">Illud uero minus eſt ſolida magnitudine propoſita. </s>
            <s xml:space="preserve">Eadȩ
              <lb/>
            ratione inſcribetur, & </s>
            <s xml:space="preserve">circumſcribetur ſolida figura in py-
              <lb/>
            ramide, quæ quadrilateram, uel plurilaterã baſim habeat.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="76">
          <head xml:space="preserve">PROBLEMA II. PROPOSITIO XI.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Dato</emph>
            cono, fieri poteſt, ut figura ſolida in-
              <lb/>
            ſcribatur, & </s>
            <s xml:space="preserve">altera circumſcribatur ex cylindris
              <lb/>
            æqualem habentibus altitudinem, ita ut circum-
              <lb/>
            ſcripta ſuperet inſcriptam, magnitudine, quæ ſo-
              <lb/>
            lida magnitudine propoſita ſit minor.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT conus, cuius axis b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano per axem
              <lb/>
            ducto, ut ſectio ſit triangulum a b c: </s>
            <s xml:space="preserve">intelligaturq; </s>
            <s xml:space="preserve">cylin-
              <lb/>
            drus, qui baſim eandem, & </s>
            <s xml:space="preserve">eundem axem habeat. </s>
            <s xml:space="preserve">Hoc igi-
              <lb/>
            tur cylindro continenter bifariam ſecto, relinquetur cylin
              <lb/>
            drus minor ſolida magnitudine propoſita. </s>
            <s xml:space="preserve">Sit autem is cy
              <lb/>
            lindrus, qui baſim habet circulum circa diametrum a c, & </s>
            <s xml:space="preserve">
              <lb/>
            axem d e. </s>
            <s xml:space="preserve">Itaque diuidatur b d in partes æquales ipſi d e
              <lb/>
            in punctis f g h _K_lm: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per ea ducantur plana conum ſe-
              <lb/>
            cantia; </s>
            <s xml:space="preserve">quæ baſi æquidiſtent. </s>
            <s xml:space="preserve">erunt ſectiones circuli, cen-
              <lb/>
            tra in axi habentes, ut in primo libro conicorum, propoſi-</s>
          </p>
        </div>
      </text>
    </echo>