Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(31)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
89
">
<
pb
o
="
31
"
file
="
0173
"
n
="
173
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:space
="
preserve
">SIT fruſtum pyramidis a e, cuius maior baſis triangu-
<
lb
/>
lum a b c, minor d e f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">oporteat ipſum plano, quod baſi
<
lb
/>
æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
<
lb
/>
gula a b c, d e f. </
s
>
<
s
xml:space
="
preserve
">Inueniatur inter lineas a b, d e media pro-
<
lb
/>
portionalis, quæ ſit b g: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">à puncto g erigatur g h æquidi-
<
lb
/>
ſtans b e, ſecansq; </
s
>
<
s
xml:space
="
preserve
">a d in h: </
s
>
<
s
xml:space
="
preserve
">deinde per h ducatur planum
<
lb
/>
baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1. </
s
>
<
s
xml:space
="
preserve
">Dico
<
lb
/>
triangulum h K l proportionale eſſe inter triangula a b c,
<
lb
/>
d e f, hoc eſt triangulum a b c ad
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0173-01a
"
xlink:href
="
fig-0173-01
"/>
triangulum h K l eandem habere
<
lb
/>
proportionem, quam triãgulum
<
lb
/>
h K l ad ipſum d e f. </
s
>
<
s
xml:space
="
preserve
">Quoniã enim
<
lb
/>
lineæ a b, h K æquidiſtantium pla
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0173-01a
"
xlink:href
="
note-0173-01
"/>
norum ſectiones inter ſe æquidi-
<
lb
/>
ſtant: </
s
>
<
s
xml:space
="
preserve
">atque æquidiſtant b _k_, g h:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">linea h _k_ ipſi g b eſt æqualis: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">pro
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0173-02a
"
xlink:href
="
note-0173-02
"/>
pterea proportionalis inter a b,
<
lb
/>
d e. </
s
>
<
s
xml:space
="
preserve
">quare ut a b ad h K, ita eſt h
<
emph
style
="
sc
">K</
emph
>
<
lb
/>
ad d e. </
s
>
<
s
xml:space
="
preserve
">fiat ut h k ad d e, ita d e
<
lb
/>
ad aliam lineam, in qua ſit m. </
s
>
<
s
xml:space
="
preserve
">erit
<
lb
/>
ex æquali ut a b ad d e, ita h k ad
<
lb
/>
m. </
s
>
<
s
xml:space
="
preserve
">Et quoniam triangula a b c,
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0173-03a
"
xlink:href
="
note-0173-03
"/>
h K l, d e f ſimilia ſunt; </
s
>
<
s
xml:space
="
preserve
">triangulū
<
lb
/>
a b c ad triangulum h k l eſt, ut li-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0173-04a
"
xlink:href
="
note-0173-04
"/>
nea a b ad lineam d e: </
s
>
<
s
xml:space
="
preserve
">triangulũ
<
lb
/>
autem h k l ad ipſum d e f eſt, ut h _k_ ad m. </
s
>
<
s
xml:space
="
preserve
">ergo tríangulum
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0173-05a
"
xlink:href
="
note-0173-05
"/>
a b c ad triangulum h k l eandem proportionem habet,
<
lb
/>
quam triangulum h K l ad ipſum d e f. </
s
>
<
s
xml:space
="
preserve
">Eodem modo in a-
<
lb
/>
liis fruſtis pyramidis idem demonſtrabitur.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
figure
xlink:label
="
fig-0173-01
"
xlink:href
="
fig-0173-01a
">
<
image
file
="
0173-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0173-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0173-01
"
xlink:href
="
note-0173-01a
"
xml:space
="
preserve
">16. unde
<
lb
/>
cimi</
note
>
<
note
position
="
right
"
xlink:label
="
note-0173-02
"
xlink:href
="
note-0173-02a
"
xml:space
="
preserve
">34. primi</
note
>
<
note
position
="
right
"
xlink:label
="
note-0173-03
"
xlink:href
="
note-0173-03a
"
xml:space
="
preserve
">9. huius
<
lb
/>
corol.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0173-04
"
xlink:href
="
note-0173-04a
"
xml:space
="
preserve
">20. ſexti</
note
>
<
note
position
="
right
"
xlink:label
="
note-0173-05
"
xlink:href
="
note-0173-05a
"
xml:space
="
preserve
">11. quinti</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit fruſtum coni, uel coni portionis a d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſecetur plano
<
lb
/>
per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
<
lb
/>
circulus, uel ellipſis circa diametrum a b; </
s
>
<
s
xml:space
="
preserve
">minor circa c d.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Rurſus inter lineas a b, c d inueniatur proportionalis b e: </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f ſecet,</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>