16728DE CENTRO GRAVIT. SOLID.
uel coni portionis axis à centro grauitatis ita diui
ditur, ut pars, quæ terminatur ad uerticem reli-
quæ partis, quæ ad baſim, ſit tripla.
ditur, ut pars, quæ terminatur ad uerticem reli-
quæ partis, quæ ad baſim, ſit tripla.
Sit pyramis, cuius baſis triangulum a b c;
axis d e;
&
gra
uitatis centrum _K_. Dico lineam d k ipſius _K_ e triplam eſſe.
trianguli enim b d c centrum grauitatis ſit punctum f; triã
guli a d c centrũ g; & trianguli a d b ſit h: & iungantur a f,
b g, c h. Quoniam igitur centrũ grauitatis pyramidis in axe
cõſiſtit: ſuntq; d e, a f, b g, c h eiuſdẽ pyramidis axes: conue
1117. huíus nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
Itaque animo concipiamus hanc pyramidem diuiſam in
quatuor pyramides, quarum baſes ſint ipſa pyramidis
triangula; & axis pun-
88[Handwritten note 8]123[Figure 123] ctum k quæ quidem py-
ramides inter ſe æquales
ſunt, ut demõſtrabitur.
Ducatur enĩ per lineas
d c, d e planum ſecãs, ut
ſit ipſius, & baſis a b c cõ
munis ſectio recta linea
c e l: eiuſdẽ uero & triã-
guli a d b ſitlinea d h l.
erit linea a l æqualis ipſi
l b: nam centrum graui-
tatis trianguli conſiſtit
in linea, quæ ab angulo
ad dimidiam baſim per-
ducitur, ex tertia deci-
ma Archimedis. quare
221. ſexti. triangulum a c l æquale
eſt triangulo b c l: & propterea pyramis, cuius baſis trian-
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
triangulum, & idem uertex. pyramides enim, quæ ab eodẽ
335. duode-
cimi.
uitatis centrum _K_. Dico lineam d k ipſius _K_ e triplam eſſe.
trianguli enim b d c centrum grauitatis ſit punctum f; triã
guli a d c centrũ g; & trianguli a d b ſit h: & iungantur a f,
b g, c h. Quoniam igitur centrũ grauitatis pyramidis in axe
cõſiſtit: ſuntq; d e, a f, b g, c h eiuſdẽ pyramidis axes: conue
1117. huíus nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
Itaque animo concipiamus hanc pyramidem diuiſam in
quatuor pyramides, quarum baſes ſint ipſa pyramidis
triangula; & axis pun-
88[Handwritten note 8]123[Figure 123] ctum k quæ quidem py-
ramides inter ſe æquales
ſunt, ut demõſtrabitur.
Ducatur enĩ per lineas
d c, d e planum ſecãs, ut
ſit ipſius, & baſis a b c cõ
munis ſectio recta linea
c e l: eiuſdẽ uero & triã-
guli a d b ſitlinea d h l.
erit linea a l æqualis ipſi
l b: nam centrum graui-
tatis trianguli conſiſtit
in linea, quæ ab angulo
ad dimidiam baſim per-
ducitur, ex tertia deci-
ma Archimedis. quare
221. ſexti. triangulum a c l æquale
eſt triangulo b c l: & propterea pyramis, cuius baſis trian-
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
triangulum, & idem uertex. pyramides enim, quæ ab eodẽ
335. duode-
cimi.