Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < of 213 > >|
174FED. COMMANDINI per f planum baſibus æquidiſtans ducatur, ut ſit ſectio cir
culus, uel ellipſis circa diametrum f g.
Dico ſectionem a b
ad ſectionem f g eandem proportionem habere, quam f g
ad ipſam c d.
Simili enim ratione, qua ſupra, demonſtrabi-
tur quadratum a b ad quadratum f g ita eſſe, ut quadratũ
f g ad c d quadratum.
Sed circuli inter ſe eandem propor-
112. duode
cimi
tionem habent, quam diametrorum quadrata.
ellipſes au-
tem circa a b, f g, c d, quæ ſimiles ſunt, ut oſten dimus in cõ-
mentariis in principium libri Archimedis de conoidibus,
&
ſphæroidibus, eam habẽt proportionem, quam quadrar
ta diametrorum, quæ eiuſdem rationis ſunt, ex corollaio-
ſeptimæ propoſitionis eiuſdem li-
128[Figure 128] bri.
ellipſes enim nunc appello ip-
ſa ſpacia ellipſibus contenta.
ergo
circulus, uel ellipſis a b ad circulũ,
uel ellipſim f g eam proportionem
habet, quam circulus, uel ellipſis
f g ad circulum uel ellipſim c d.
quod quidem facienduni propo-
ſuimus.
THEOREMA XX. PROPOSITIO XXV.
Qvodlibet fruſtum pyramidis, uel coni,
uel coni portionis ad pyramidem, uel conum, uel
coni portionem, cuius baſis eadem eſt, &
æqualis
altitudo, eandem proportionẽ habet, quam utræ
que baſes, maior, &
minor ſimul ſumptæ vnà cũ
ea, quæ inter ipſas ſit proportionalis, ad baſim ma
iorem.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index