Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb file="0116" n="116" rhead="FED. COMMANDINI"/>
            quæ quidem in centro conueniunt. </s>
            <s xml:space="preserve">idem igitur eſt centrum
              <lb/>
            grauitatis quadrati, & </s>
            <s xml:space="preserve">circuli centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0115-02" xlink:href="fig-0115-02a">
              <image file="0115-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-02"/>
            </figure>
            <note position="right" xlink:label="note-0115-04" xlink:href="note-0115-04a" xml:space="preserve">51. tortil.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit pentagonum æquilaterum, & </s>
            <s xml:space="preserve">æquiangulum in circu-
              <lb/>
            lo deſcriptum a b c d e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iun-
              <lb/>
              <anchor type="figure" xlink:label="fig-0116-01a" xlink:href="fig-0116-01"/>
            cta b d, bifariamq́; </s>
            <s xml:space="preserve">in ſ diuiſa,
              <lb/>
            ducatur c f, & </s>
            <s xml:space="preserve">producatur ad
              <lb/>
            circuli circumferentiam in g;
              <lb/>
            </s>
            <s xml:space="preserve">quæ lineam a e in h ſecet: </s>
            <s xml:space="preserve">de-
              <lb/>
            inde iungantur a c, c e. </s>
            <s xml:space="preserve">Eodem
              <lb/>
            modo, quo ſupra demonſtra-
              <lb/>
            bimus angulum b c f æqualem
              <lb/>
            eſſe angulo d c f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulos
              <lb/>
            ad f utroſque rectos: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcir-
              <lb/>
            colineam c f g per circuli cen
              <lb/>
            trum tranſire. </s>
            <s xml:space="preserve">Quoniam igi-
              <lb/>
            tur latera c b, b a, & </s>
            <s xml:space="preserve">c d, d e æqualia ſunt; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æquales anguli
              <lb/>
            c b a, c d e: </s>
            <s xml:space="preserve">erit baſis c a baſi c e, & </s>
            <s xml:space="preserve">angulus b c a angulo
              <lb/>
              <anchor type="note" xlink:label="note-0116-01a" xlink:href="note-0116-01"/>
            d c e æqualis. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">reliquus a c h, reliquo e c h. </s>
            <s xml:space="preserve">eſt au-
              <lb/>
            tem c h utrique triangulo a c h, e c h communis. </s>
            <s xml:space="preserve">quare
              <lb/>
            baſis a h æqualis eſt baſi h e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">anguli, quiad h recti: </s>
            <s xml:space="preserve">ſuntq́;
              <lb/>
            </s>
            <s xml:space="preserve">recti, qui ad f. </s>
            <s xml:space="preserve">ergo lineæ a e, b d inter ſe ſe æquidiſtant. </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="note" xlink:label="note-0116-02a" xlink:href="note-0116-02"/>
            Itaque cum trapezij a b d e latera b d, a e æquidiſtantia à li
              <lb/>
            nea fh bifariam diuidantur; </s>
            <s xml:space="preserve">centrum grauitatis ipſius erit
              <lb/>
            in linea f h, ex ultima eiuſdem libri Archimedis. </s>
            <s xml:space="preserve">Sed trian-
              <lb/>
              <anchor type="note" xlink:label="note-0116-03a" xlink:href="note-0116-03"/>
            guli b c d centrum grauitatis eſt in linea c f. </s>
            <s xml:space="preserve">ergo in eadem
              <lb/>
            linea c h eſt centrum grauitatis trapezij a b d e, & </s>
            <s xml:space="preserve">trian-
              <lb/>
            guli b c d: </s>
            <s xml:space="preserve">hoc eſt pentagoni ipſius centrum & </s>
            <s xml:space="preserve">centrum
              <lb/>
            circuli. </s>
            <s xml:space="preserve">Rurſus ſi iuncta a d, bifariamq́; </s>
            <s xml:space="preserve">ſecta in k, duca-
              <lb/>
            tur e k l: </s>
            <s xml:space="preserve">demonſtrabimus in ipſa utrumque centrum in
              <lb/>
            eſſe. </s>
            <s xml:space="preserve">Sequitur ergo, ut punctum, in quo lineæ c g, e l con-
              <lb/>
            ueniunt, idem ſit centrum circuli, & </s>
            <s xml:space="preserve">centrum grauitatis
              <lb/>
            pentagoni.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0116-01" xlink:href="fig-0116-01a">
              <image file="0116-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0116-01"/>
            </figure>
            <note position="left" xlink:label="note-0116-01" xlink:href="note-0116-01a" xml:space="preserve">4. Primi.</note>
            <note position="left" xlink:label="note-0116-02" xlink:href="note-0116-02a" xml:space="preserve">08. primi.</note>
            <note position="left" xlink:label="note-0116-03" xlink:href="note-0116-03a" xml:space="preserve">13. Archi-
              <lb/>
            medis.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit hexagonum a b c d e f æquilaterum, & </s>
            <s xml:space="preserve">æquiangulum
              <lb/>
            in circulo deſignatum: </s>
            <s xml:space="preserve">iunganturq́; </s>
            <s xml:space="preserve">b d, a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam ſe-</s>
          </p>
        </div>
      </text>
    </echo>