Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (8) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <p>
            <s xml:space="preserve">
              <pb o="8" file="0127" n="127" rhead="DE CENTRO GRAVIT. SOLID."/>
            æquidiſtant autem c g o, m n p. </s>
            <s xml:space="preserve">ergo parallelogrãma ſunt
              <lb/>
            o n, g m, & </s>
            <s xml:space="preserve">linea m n æqualis c g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n p ipſi g o. </s>
            <s xml:space="preserve">aptatis igi-
              <lb/>
            tur
              <emph style="sc">K</emph>
            l m, a b c triãgulis, quæ æqualia & </s>
            <s xml:space="preserve">ſimilia sũt; </s>
            <s xml:space="preserve">linea m p
              <lb/>
            in c o, & </s>
            <s xml:space="preserve">punctum n in g cadet. </s>
            <s xml:space="preserve">Quòd cũ g ſit centrum gra-
              <lb/>
            uitatis trianguli a b c, & </s>
            <s xml:space="preserve">n trianguli
              <emph style="sc">K</emph>
            l m grauitatis cen-
              <lb/>
            trum erit id, quod demonſtrandum relinquebatur. </s>
            <s xml:space="preserve">Simili
              <lb/>
            ratione idem contingere demonſtrabimus in aliis priſma-
              <lb/>
            tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
              <lb/>
            quæ opponuntur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0126-01" xlink:href="note-0126-01a" xml:space="preserve">10. unde
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-02" xlink:href="note-0126-02a" xml:space="preserve">10. unde-
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-03" xlink:href="note-0126-03a" xml:space="preserve">4. ſexti</note>
            <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a">
              <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0126-01"/>
            </figure>
            <note position="left" xlink:label="note-0126-04" xlink:href="note-0126-04a" xml:space="preserve">per 5. pe-
              <lb/>
            titionem
              <lb/>
            Archime
              <lb/>
            dis.</note>
          </div>
        </div>
        <div type="section" level="1" n="70">
          <head xml:space="preserve">COROLLARIVM.</head>
          <p>
            <s xml:space="preserve">Exiam demonſtratis perſpicue apparet, cuius
              <lb/>
            Iibet priſmatis axem, parallelogrammorum lat eri
              <lb/>
            bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="71">
          <head xml:space="preserve">THEOREMA VI. PROPOSITIO VI.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis centrum grauitatis eſt in
              <lb/>
            plano, quod oppoſitis planis æquidiſtans, reli-
              <lb/>
            quorum planorum latera bifariam diuidit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana, quæ opponuntur ſint trian-
              <lb/>
            gula a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">parallelogrammorum latera a b, c d,
              <lb/>
            e f bifariam diuidãtur in punctis g h _K_: </s>
            <s xml:space="preserve">per diuiſiones au-
              <lb/>
            tem planum ducatur; </s>
            <s xml:space="preserve">cuius ſectio figura g h _K_. </s>
            <s xml:space="preserve">eritlinea
              <lb/>
              <anchor type="note" xlink:label="note-0127-01a" xlink:href="note-0127-01"/>
            g h æquidiſtans lineis a c, b d & </s>
            <s xml:space="preserve">h k ipſis c e, d f. </s>
            <s xml:space="preserve">quare ex
              <lb/>
            decimaquinta undecimi elementorum, planum illud pla
              <lb/>
            nis a c e, b d f æquidiſtabit, & </s>
            <s xml:space="preserve">ſaciet ſectionem figu-
              <lb/>
              <anchor type="note" xlink:label="note-0127-02a" xlink:href="note-0127-02"/>
            ram ipſis æqualem, & </s>
            <s xml:space="preserve">ſimilem, ut proxime demonſtra-
              <lb/>
            uimus. </s>
            <s xml:space="preserve">Dico centrum grauitatis priſmatis eſſe in plano
              <lb/>
            g h
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit eius centrum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur
              <lb/>
            l m uſque ad planum g h
              <emph style="sc">K</emph>
            , quæ ipſi a b æquidiſtet.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>