Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div212
"
type
="
section
"
level
="
1
"
n
="
71
">
<
p
>
<
s
xml:id
="
echoid-s3281
"
xml:space
="
preserve
">
<
pb
file
="
0128
"
n
="
128
"
rhead
="
FED. COMMANDINI
"/>
ergo linea a g continenter in duas partes æquales diui-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0128-01
"
xlink:href
="
note-0128-01a
"
xml:space
="
preserve
">1. decimi</
note
>
ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3282
"
xml:space
="
preserve
">Vtraque uero linearum a g, g b diuidatur in partes æqua-
<
lb
/>
les ipſi n g: </
s
>
<
s
xml:id
="
echoid-s3283
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3284
"
xml:space
="
preserve
">per puncta diuiſionum plana oppoſitis pla-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0128-02
"
xlink:href
="
note-0128-02a
"
xml:space
="
preserve
">5 huius</
note
>
nis æquidiſtantia ducantur. </
s
>
<
s
xml:id
="
echoid-s3285
"
xml:space
="
preserve
">erunt ſectiones figuræ æqua-
<
lb
/>
les, ac ſimiles ipſis a c e, b d f: </
s
>
<
s
xml:id
="
echoid-s3286
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3287
"
xml:space
="
preserve
">totum priſma diuiſum erit
<
lb
/>
in priſmata æqualia, & </
s
>
<
s
xml:id
="
echoid-s3288
"
xml:space
="
preserve
">ſimilia: </
s
>
<
s
xml:id
="
echoid-s3289
"
xml:space
="
preserve
">quæ cum inter ſe congruãt;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3290
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3291
"
xml:space
="
preserve
">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </
s
>
<
s
xml:id
="
echoid-s3292
"
xml:space
="
preserve
">
<
lb
/>
habebunt. </
s
>
<
s
xml:id
="
echoid-s3293
"
xml:space
="
preserve
">Itaq: </
s
>
<
s
xml:id
="
echoid-s3294
"
xml:space
="
preserve
">
<
lb
/>
<
figure
xlink:label
="
fig-0128-01
"
xlink:href
="
fig-0128-01a
"
number
="
84
">
<
image
file
="
0128-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0128-01
"/>
</
figure
>
ſunt magnitudi-
<
lb
/>
nes quædã æqua-
<
lb
/>
les ipſi n h, & </
s
>
<
s
xml:id
="
echoid-s3295
"
xml:space
="
preserve
">nu-
<
lb
/>
mero pares, qua-
<
lb
/>
rum centra gra-
<
lb
/>
uitatis in eadẽ re
<
lb
/>
cta linea conſti-
<
lb
/>
tuuntur: </
s
>
<
s
xml:id
="
echoid-s3296
"
xml:space
="
preserve
">duæ ue-
<
lb
/>
ro mediæ æqua-
<
lb
/>
les ſunt: </
s
>
<
s
xml:id
="
echoid-s3297
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3298
"
xml:space
="
preserve
">quæ ex
<
lb
/>
utraque parte i-
<
lb
/>
pſarum ſimili --
<
lb
/>
ter æquales: </
s
>
<
s
xml:id
="
echoid-s3299
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3300
"
xml:space
="
preserve
">æ-
<
lb
/>
quales rectæ li-
<
lb
/>
neæ, quæ inter
<
lb
/>
grauitatis centra
<
lb
/>
interiiciuntur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3301
"
xml:space
="
preserve
">quare ex corolla-
<
lb
/>
rio quintæ pro-
<
lb
/>
poſitionis primi
<
lb
/>
libri Archimedis
<
lb
/>
de centro graui-
<
lb
/>
tatis planorum; </
s
>
<
s
xml:id
="
echoid-s3302
"
xml:space
="
preserve
">magnitudinis ex his omnibus compoſitæ
<
lb
/>
centrum grauitatis eſt in medio lineæ, quæ magnitudi-
<
lb
/>
num mediarum centra coniungit. </
s
>
<
s
xml:id
="
echoid-s3303
"
xml:space
="
preserve
">at qui non ita res </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>