Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb file="0128" n="128" rhead="FED. COMMANDINI"/>
            ergo linea a g continenter in duas partes æquales diui-
              <lb/>
              <anchor type="note" xlink:label="note-0128-01a" xlink:href="note-0128-01"/>
            ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
              <lb/>
            </s>
            <s xml:space="preserve">Vtraque uero linearum a g, g b diuidatur in partes æqua-
              <lb/>
            les ipſi n g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per puncta diuiſionum plana oppoſitis pla-
              <lb/>
              <anchor type="note" xlink:label="note-0128-02a" xlink:href="note-0128-02"/>
            nis æquidiſtantia ducantur. </s>
            <s xml:space="preserve">erunt ſectiones figuræ æqua-
              <lb/>
            les, ac ſimiles ipſis a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">totum priſma diuiſum erit
              <lb/>
            in priſmata æqualia, & </s>
            <s xml:space="preserve">ſimilia: </s>
            <s xml:space="preserve">quæ cum inter ſe congruãt;
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </s>
            <s xml:space="preserve">
              <lb/>
            habebunt. </s>
            <s xml:space="preserve">Itaq: </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0128-01a" xlink:href="fig-0128-01"/>
            ſunt magnitudi-
              <lb/>
            nes quædã æqua-
              <lb/>
            les ipſi n h, & </s>
            <s xml:space="preserve">nu-
              <lb/>
            mero pares, qua-
              <lb/>
            rum centra gra-
              <lb/>
            uitatis in eadẽ re
              <lb/>
            cta linea conſti-
              <lb/>
            tuuntur: </s>
            <s xml:space="preserve">duæ ue-
              <lb/>
            ro mediæ æqua-
              <lb/>
            les ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ex
              <lb/>
            utraque parte i-
              <lb/>
            pſarum ſimili --
              <lb/>
            ter æquales: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æ-
              <lb/>
            quales rectæ li-
              <lb/>
            neæ, quæ inter
              <lb/>
            grauitatis centra
              <lb/>
            interiiciuntur.
              <lb/>
            </s>
            <s xml:space="preserve">quare ex corolla-
              <lb/>
            rio quintæ pro-
              <lb/>
            poſitionis primi
              <lb/>
            libri Archimedis
              <lb/>
            de centro graui-
              <lb/>
            tatis planorum; </s>
            <s xml:space="preserve">magnitudinis ex his omnibus compoſitæ
              <lb/>
            centrum grauitatis eſt in medio lineæ, quæ magnitudi-
              <lb/>
            num mediarum centra coniungit. </s>
            <s xml:space="preserve">at qui non ita res ha-</s>
          </p>
        </div>
      </text>
    </echo>