Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3603
"
xml:space
="
preserve
">
<
pb
file
="
0142
"
n
="
142
"
rhead
="
FED. COMMANDINI
"/>
<
figure
xlink:label
="
fig-0142-01
"
xlink:href
="
fig-0142-01a
"
number
="
96
">
<
image
file
="
0142-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0142-01
"/>
</
figure
>
linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
<
lb
/>
gura rectilinea y. </
s
>
<
s
xml:id
="
echoid-s3604
"
xml:space
="
preserve
">ergo pyramis x pyramide y minor erit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3605
"
xml:space
="
preserve
">Sed & </
s
>
<
s
xml:id
="
echoid-s3606
"
xml:space
="
preserve
">maior; </
s
>
<
s
xml:id
="
echoid-s3607
"
xml:space
="
preserve
">quod fieri nõ poteſt. </
s
>
<
s
xml:id
="
echoid-s3608
"
xml:space
="
preserve
">At ſi conus, uel coni por
<
lb
/>
tio x ponatur minor pyramide y: </
s
>
<
s
xml:id
="
echoid-s3609
"
xml:space
="
preserve
">ſit alter conus æque al-
<
lb
/>
tus, uel altera coni portio χ ipſi pyramidi y æqualis. </
s
>
<
s
xml:id
="
echoid-s3610
"
xml:space
="
preserve
">erit
<
lb
/>
eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
<
lb
/>
quorum exceſſus ſit ſpacium ω. </
s
>
<
s
xml:id
="
echoid-s3611
"
xml:space
="
preserve
">Siigitur in circulo, uel elli-
<
lb
/>
pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
<
lb
/>
ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
<
lb
/>
culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </
s
>
<
s
xml:id
="
echoid-s3612
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3613
"
xml:space
="
preserve
">p_y_ramis in
<
lb
/>
ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
<
lb
/>
nor p_y_ramide_y_. </
s
>
<
s
xml:id
="
echoid-s3614
"
xml:space
="
preserve
">eſt ergo ut χ figura rectilinea ad figuram
<
lb
/>
rectilineam _y_, ita pyramis χ ad pyramidem _y_. </
s
>
<
s
xml:id
="
echoid-s3615
"
xml:space
="
preserve
">quare cum
<
lb
/>
figura rectilinea χ ſit maior figura_y_: </
s
>
<
s
xml:id
="
echoid-s3616
"
xml:space
="
preserve
">erit & </
s
>
<
s
xml:id
="
echoid-s3617
"
xml:space
="
preserve
">p_y_ramis χ p_y_-
<
lb
/>
ramide_y_ maior. </
s
>
<
s
xml:id
="
echoid-s3618
"
xml:space
="
preserve
">ſed erat minor; </
s
>
<
s
xml:id
="
echoid-s3619
"
xml:space
="
preserve
">quod rurſus fieri non po-
<
lb
/>
teſt. </
s
>
<
s
xml:id
="
echoid-s3620
"
xml:space
="
preserve
">non eſt igitur conus, uel coni portio x neque maior,
<
lb
/>
neque minor p_y_ramide_y_. </
s
>
<
s
xml:id
="
echoid-s3621
"
xml:space
="
preserve
">ergo ipſi neceſſario eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3622
"
xml:space
="
preserve
">
<
lb
/>
Itaque quoniam ut conus ad conum, uel coni portio ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>