Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(19)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div230
"
type
="
section
"
level
="
1
"
n
="
78
">
<
pb
o
="
19
"
file
="
0149
"
n
="
149
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
figure
number
="
102
">
<
image
file
="
0149-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0149-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
head
xml:id
="
echoid-head86
"
xml:space
="
preserve
">THEOREMA X. PROPOSITIO XIIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3761
"
xml:space
="
preserve
">Cuiuslibet pyramidis, & </
s
>
<
s
xml:id
="
echoid-s3762
"
xml:space
="
preserve
">cuiuslibet coni, uel
<
lb
/>
coni portionis, centrum grauitatis in axe cõſiſtit.</
s
>
<
s
xml:id
="
echoid-s3763
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3764
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c: </
s
>
<
s
xml:id
="
echoid-s3765
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3766
"
xml:space
="
preserve
">axis d e.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3767
"
xml:space
="
preserve
">Dico in linea d e ipſius grauitatis centrum ineſſe. </
s
>
<
s
xml:id
="
echoid-s3768
"
xml:space
="
preserve
">Si enim
<
lb
/>
fieri poteſt, ſit centrum f: </
s
>
<
s
xml:id
="
echoid-s3769
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3770
"
xml:space
="
preserve
">ab f ducatur ad baſim pyrami
<
lb
/>
dis linea f g, axi æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s3771
"
xml:space
="
preserve
">iunctaq; </
s
>
<
s
xml:id
="
echoid-s3772
"
xml:space
="
preserve
">e g ad latera trian-
<
lb
/>
guli a b c producatur in h. </
s
>
<
s
xml:id
="
echoid-s3773
"
xml:space
="
preserve
">quam uero proportionem ha-
<
lb
/>
bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
<
lb
/>
quo K: </
s
>
<
s
xml:id
="
echoid-s3774
"
xml:space
="
preserve
">inſcribaturq; </
s
>
<
s
xml:id
="
echoid-s3775
"
xml:space
="
preserve
">in pyramide ſolida figura, & </
s
>
<
s
xml:id
="
echoid-s3776
"
xml:space
="
preserve
">altera cir
<
lb
/>
cumſcribatur ex priſmatibus æqualem habentibus altitu-
<
lb
/>
dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
<
lb
/>
dine, quæ ſolido _k_ ſit minor. </
s
>
<
s
xml:id
="
echoid-s3777
"
xml:space
="
preserve
">Et quoniam in pyramide pla
<
lb
/>
num baſi æquidiſtans ductum ſectionem facit figuram ſi-
<
lb
/>
milem ei, quæ eſt baſis; </
s
>
<
s
xml:id
="
echoid-s3778
"
xml:space
="
preserve
">centrumq; </
s
>
<
s
xml:id
="
echoid-s3779
"
xml:space
="
preserve
">grauitatis in axe haben
<
lb
/>
tem: </
s
>
<
s
xml:id
="
echoid-s3780
"
xml:space
="
preserve
">erit priſmatis s t grauitatis centrũ in linear q; </
s
>
<
s
xml:id
="
echoid-s3781
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis u x centrum in linea q p; </
s
>
<
s
xml:id
="
echoid-s3782
"
xml:space
="
preserve
">priſmatis y z in linea p o; </
s
>
<
s
xml:id
="
echoid-s3783
"
xml:space
="
preserve
">
<
lb
/>
priſmatis η θ in l_i_nea o n; </
s
>
<
s
xml:id
="
echoid-s3784
"
xml:space
="
preserve
">priſmatis λ μ in linea n m; </
s
>
<
s
xml:id
="
echoid-s3785
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis ν π in m l; </
s
>
<
s
xml:id
="
echoid-s3786
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3787
"
xml:space
="
preserve
">denique priſmatis ρ σ in l e. </
s
>
<
s
xml:id
="
echoid-s3788
"
xml:space
="
preserve
">quare </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>