Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div238
"
type
="
section
"
level
="
1
"
n
="
82
">
<
p
>
<
s
xml:id
="
echoid-s3895
"
xml:space
="
preserve
">
<
pb
file
="
0156
"
n
="
156
"
rhead
="
FED. COMMANDINI
"/>
mus: </
s
>
<
s
xml:id
="
echoid-s3896
"
xml:space
="
preserve
">erit utique grauitatis centrum pyramidis punctum
<
lb
/>
g: </
s
>
<
s
xml:id
="
echoid-s3897
"
xml:space
="
preserve
">in quo ſcilicet ipſi axes conueniunt.</
s
>
<
s
xml:id
="
echoid-s3898
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div240
"
type
="
section
"
level
="
1
"
n
="
83
">
<
head
xml:id
="
echoid-head90
"
xml:space
="
preserve
">THEOREMA XIIII. PROPOSITIO XVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3899
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Si</
emph
>
ſolidum parallelepipedum ſecetur plano
<
lb
/>
baſibus æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3900
"
xml:space
="
preserve
">erit ſolidum ad ſolidum,
<
lb
/>
ſicut altitudo ad altitudinem, uel ſicut axisad
<
lb
/>
axem.</
s
>
<
s
xml:id
="
echoid-s3901
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3902
"
xml:space
="
preserve
">Sit ſolidum parallelepipe
<
lb
/>
<
figure
xlink:label
="
fig-0156-01
"
xlink:href
="
fig-0156-01a
"
number
="
110
">
<
image
file
="
0156-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0156-01
"/>
</
figure
>
dum a b c d e f g h, cuius axis
<
lb
/>
k 1: </
s
>
<
s
xml:id
="
echoid-s3903
"
xml:space
="
preserve
">ſeceturq; </
s
>
<
s
xml:id
="
echoid-s3904
"
xml:space
="
preserve
">plano baſibus
<
lb
/>
æquidiſtante, quod faciat
<
lb
/>
fectionem m n o p; </
s
>
<
s
xml:id
="
echoid-s3905
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3906
"
xml:space
="
preserve
">axi in
<
lb
/>
puncto q occurrat. </
s
>
<
s
xml:id
="
echoid-s3907
"
xml:space
="
preserve
">Dico
<
lb
/>
ſolidum g m ad ſolidum m c
<
lb
/>
eam proportionem habere,
<
lb
/>
quam altitudo ſolidi g m ha-
<
lb
/>
betad ſolidi m c altitudi-
<
lb
/>
nem; </
s
>
<
s
xml:id
="
echoid-s3908
"
xml:space
="
preserve
">uel quam axis k q ad
<
lb
/>
axem q l. </
s
>
<
s
xml:id
="
echoid-s3909
"
xml:space
="
preserve
">Sienim axis K l ad
<
lb
/>
baſis planum ſit perpendicu
<
lb
/>
laris, & </
s
>
<
s
xml:id
="
echoid-s3910
"
xml:space
="
preserve
">linea g c, quæ ex quin
<
lb
/>
ta huius ipſi k l æquidiſtat,
<
lb
/>
perpendicularis erit ad idẽ
<
lb
/>
planum, & </
s
>
<
s
xml:id
="
echoid-s3911
"
xml:space
="
preserve
">ſolidi altitudi-
<
lb
/>
nem dimetietur. </
s
>
<
s
xml:id
="
echoid-s3912
"
xml:space
="
preserve
">Itaqueſo-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0156-01
"
xlink:href
="
note-0156-01a
"
xml:space
="
preserve
">2. undeci
<
lb
/>
mi.</
note
>
lidum g m ad ſolidum m c
<
lb
/>
eam proportionem habet,
<
lb
/>
quam parallelogrammũ g n
<
lb
/>
ad parallelogrammum n c,
<
lb
/>
hoc eſt quam linea g o, quæ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0156-02
"
xlink:href
="
note-0156-02a
"
xml:space
="
preserve
">i. ſexti.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>