Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3931
"
xml:space
="
preserve
">
<
pb
file
="
0158
"
n
="
158
"
rhead
="
FED. COMMANDINI
"/>
ut altitudo ad altitudinem & </
s
>
<
s
xml:id
="
echoid-s3932
"
xml:space
="
preserve
">componendo conuertendo
<
lb
/>
que ſolidum a b g h, hoc eſt ſolidum a b c d ipſi æquale, ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-01
"
xlink:href
="
note-0158-01a
"
xml:space
="
preserve
">7. quinti.</
note
>
ſolidum a b e f, ut altitudo ſolidi a b c d ad ſolidi a b e f al-
<
lb
/>
titudinem.</
s
>
<
s
xml:id
="
echoid-s3933
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3934
"
xml:space
="
preserve
">Sint ſolida parallelepipeda a b, c d in æqualibus baſibus
<
lb
/>
conſtituta: </
s
>
<
s
xml:id
="
echoid-s3935
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s3936
"
xml:space
="
preserve
">b e altitudo ſolidi a b: </
s
>
<
s
xml:id
="
echoid-s3937
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3938
"
xml:space
="
preserve
">ſolidi c d altitudo
<
lb
/>
d f; </
s
>
<
s
xml:id
="
echoid-s3939
"
xml:space
="
preserve
">quæ quidem maior ſit, quàm b e. </
s
>
<
s
xml:id
="
echoid-s3940
"
xml:space
="
preserve
">Dico ſolidum a b ad
<
lb
/>
ſolidum c d eandem habere proportionem, quam be ad
<
lb
/>
d f. </
s
>
<
s
xml:id
="
echoid-s3941
"
xml:space
="
preserve
">abſcindatur enim à linea d f æqualis ipſi b e, quæ ſit g f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3942
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3943
"
xml:space
="
preserve
">per g ducatur planum ſecans ſolidum c d; </
s
>
<
s
xml:id
="
echoid-s3944
"
xml:space
="
preserve
">quod baſibus
<
lb
/>
æquidiſtet, faciatq; </
s
>
<
s
xml:id
="
echoid-s3945
"
xml:space
="
preserve
">ſectionẽ h K. </
s
>
<
s
xml:id
="
echoid-s3946
"
xml:space
="
preserve
">erunt ſolida a b, c k æque
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-02
"
xlink:href
="
note-0158-02a
"
xml:space
="
preserve
">31. unde
<
lb
/>
cimi</
note
>
alta inter
<
lb
/>
<
figure
xlink:label
="
fig-0158-01
"
xlink:href
="
fig-0158-01a
"
number
="
112
">
<
image
file
="
0158-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0158-01
"/>
</
figure
>
ſe æqualia
<
lb
/>
cũ æqua-
<
lb
/>
les baſes
<
lb
/>
habeant.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3947
"
xml:space
="
preserve
">Sed ſolidũ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-03
"
xlink:href
="
note-0158-03a
"
xml:space
="
preserve
">18. huius</
note
>
h d ad ſoli
<
lb
/>
dum c _K_
<
lb
/>
eſt, ut alti
<
lb
/>
tudo d g
<
lb
/>
ad g f alti-
<
lb
/>
tudinẽ ſe
<
lb
/>
catur enim ſolidum c d plano baſi
<
lb
/>
<
figure
xlink:label
="
fig-0158-02
"
xlink:href
="
fig-0158-02a
"
number
="
113
">
<
image
file
="
0158-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0158-02
"/>
</
figure
>
bus æquidiſtante: </
s
>
<
s
xml:id
="
echoid-s3948
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3949
"
xml:space
="
preserve
">rurſus cõpo-
<
lb
/>
nendo, conuertendoq; </
s
>
<
s
xml:id
="
echoid-s3950
"
xml:space
="
preserve
">ſolidũ c _k_
<
lb
/>
ad ſolidum c d, ut g f ad fd. </
s
>
<
s
xml:id
="
echoid-s3951
"
xml:space
="
preserve
">ergo
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-04
"
xlink:href
="
note-0158-04a
"
xml:space
="
preserve
">7. quinti.</
note
>
ſolidum a b, quod eſt æquale ipſi
<
lb
/>
c k ad ſolidum c d eam proportio
<
lb
/>
nem habet, quam altitudo g f, hoc
<
lb
/>
eſt b e ad d f altitudinem.</
s
>
<
s
xml:id
="
echoid-s3952
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3953
"
xml:space
="
preserve
">Sint deinde ſolida parallelepipe
<
lb
/>
da a b, a c in eadem baſi; </
s
>
<
s
xml:id
="
echoid-s3954
"
xml:space
="
preserve
">quorum
<
lb
/>
axes d e, ſ e cum ipſa æquales </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>