Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (26) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div247" type="section" level="1" n="85">
          <p>
            <s xml:id="echoid-s4044" xml:space="preserve">
              <pb o="26" file="0163" n="163" rhead="DE CENTRO GRAVIT. SOLID."/>
            matis a e axis g h; </s>
            <s xml:id="echoid-s4045" xml:space="preserve">& </s>
            <s xml:id="echoid-s4046" xml:space="preserve">priſmatis a f axis l h. </s>
            <s xml:id="echoid-s4047" xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma a f eam proportionem habere, quam g h ad
              <lb/>
            h l. </s>
            <s xml:id="echoid-s4048" xml:space="preserve">ducantur à punctis g l perpendiculares ad baſis pla-
              <lb/>
            num g K, l m: </s>
            <s xml:id="echoid-s4049" xml:space="preserve">& </s>
            <s xml:id="echoid-s4050" xml:space="preserve">iungantur k h,
              <lb/>
              <figure xlink:label="fig-0163-01" xlink:href="fig-0163-01a" number="118">
                <image file="0163-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01"/>
              </figure>
            h m. </s>
            <s xml:id="echoid-s4051" xml:space="preserve">Itaque quoniam anguli g h
              <lb/>
            k, l h m ſunt æquales, ſimiliter ut
              <lb/>
            ſupra demonſtrabimus, triangu-
              <lb/>
            la g h K, l h m ſimilia eſſe; </s>
            <s xml:id="echoid-s4052" xml:space="preserve">& </s>
            <s xml:id="echoid-s4053" xml:space="preserve">ut g
              <lb/>
            K adlm, ita g h ad h l. </s>
            <s xml:id="echoid-s4054" xml:space="preserve">habet au
              <lb/>
            tem priſma a e ad priſma a f ean
              <lb/>
            dem proportionem, quam altitu
              <lb/>
            do g k ad altitudinem l m, ſicuti
              <lb/>
            demonſtratum eſt. </s>
            <s xml:id="echoid-s4055" xml:space="preserve">ergo & </s>
            <s xml:id="echoid-s4056" xml:space="preserve">ean-
              <lb/>
            dem habebit, quam g h, ad h l. </s>
            <s xml:id="echoid-s4057" xml:space="preserve">py
              <lb/>
            ramis igitur a b c d g ad pyrami-
              <lb/>
            dem a b c d l eandem proportio-
              <lb/>
            nem habebit, quam axis g h ad h l axem.</s>
            <s xml:id="echoid-s4058" xml:space="preserve"/>
          </p>
          <figure number="119">
            <image file="0163-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02"/>
          </figure>
          <p>
            <s xml:id="echoid-s4059" xml:space="preserve">Denique ſint priſmata a e, k o in æqualibus baſibus a b
              <lb/>
            c d, k l m n conſtituta; </s>
            <s xml:id="echoid-s4060" xml:space="preserve">quorum axes cum baſibus æquales
              <lb/>
            faciant angulos: </s>
            <s xml:id="echoid-s4061" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s4062" xml:space="preserve">priſmatis a e axis f g, & </s>
            <s xml:id="echoid-s4063" xml:space="preserve">altitudo f h:
              <lb/>
            </s>
            <s xml:id="echoid-s4064" xml:space="preserve">priſmatis autem k o axis p q, & </s>
            <s xml:id="echoid-s4065" xml:space="preserve">altitudo p r. </s>
            <s xml:id="echoid-s4066" xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma k o ita eſſe, ut f g ad p q. </s>
            <s xml:id="echoid-s4067" xml:space="preserve">iunctis enim g </s>
          </p>
        </div>
      </text>
    </echo>