Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(26)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
p
>
<
s
xml:id
="
echoid-s4044
"
xml:space
="
preserve
">
<
pb
o
="
26
"
file
="
0163
"
n
="
163
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
matis a e axis g h; </
s
>
<
s
xml:id
="
echoid-s4045
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4046
"
xml:space
="
preserve
">priſmatis a f axis l h. </
s
>
<
s
xml:id
="
echoid-s4047
"
xml:space
="
preserve
">Dico priſma
<
lb
/>
a e ad priſma a f eam proportionem habere, quam g h ad
<
lb
/>
h l. </
s
>
<
s
xml:id
="
echoid-s4048
"
xml:space
="
preserve
">ducantur à punctis g l perpendiculares ad baſis pla-
<
lb
/>
num g K, l m: </
s
>
<
s
xml:id
="
echoid-s4049
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4050
"
xml:space
="
preserve
">iungantur k h,
<
lb
/>
<
figure
xlink:label
="
fig-0163-01
"
xlink:href
="
fig-0163-01a
"
number
="
118
">
<
image
file
="
0163-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01
"/>
</
figure
>
h m. </
s
>
<
s
xml:id
="
echoid-s4051
"
xml:space
="
preserve
">Itaque quoniam anguli g h
<
lb
/>
k, l h m ſunt æquales, ſimiliter ut
<
lb
/>
ſupra demonſtrabimus, triangu-
<
lb
/>
la g h K, l h m ſimilia eſſe; </
s
>
<
s
xml:id
="
echoid-s4052
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4053
"
xml:space
="
preserve
">ut g
<
lb
/>
K adlm, ita g h ad h l. </
s
>
<
s
xml:id
="
echoid-s4054
"
xml:space
="
preserve
">habet au
<
lb
/>
tem priſma a e ad priſma a f ean
<
lb
/>
dem proportionem, quam altitu
<
lb
/>
do g k ad altitudinem l m, ſicuti
<
lb
/>
demonſtratum eſt. </
s
>
<
s
xml:id
="
echoid-s4055
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4056
"
xml:space
="
preserve
">ean-
<
lb
/>
dem habebit, quam g h, ad h l. </
s
>
<
s
xml:id
="
echoid-s4057
"
xml:space
="
preserve
">py
<
lb
/>
ramis igitur a b c d g ad pyrami-
<
lb
/>
dem a b c d l eandem proportio-
<
lb
/>
nem habebit, quam axis g h ad h l axem.</
s
>
<
s
xml:id
="
echoid-s4058
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
119
">
<
image
file
="
0163-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s4059
"
xml:space
="
preserve
">Denique ſint priſmata a e, k o in æqualibus baſibus a b
<
lb
/>
c d, k l m n conſtituta; </
s
>
<
s
xml:id
="
echoid-s4060
"
xml:space
="
preserve
">quorum axes cum baſibus æquales
<
lb
/>
faciant angulos: </
s
>
<
s
xml:id
="
echoid-s4061
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4062
"
xml:space
="
preserve
">priſmatis a e axis f g, & </
s
>
<
s
xml:id
="
echoid-s4063
"
xml:space
="
preserve
">altitudo f h:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4064
"
xml:space
="
preserve
">priſmatis autem k o axis p q, & </
s
>
<
s
xml:id
="
echoid-s4065
"
xml:space
="
preserve
">altitudo p r. </
s
>
<
s
xml:id
="
echoid-s4066
"
xml:space
="
preserve
">Dico priſma
<
lb
/>
a e ad priſma k o ita eſſe, ut f g ad p q. </
s
>
<
s
xml:id
="
echoid-s4067
"
xml:space
="
preserve
">iunctis enim g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>