Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4256
"
xml:space
="
preserve
">
<
pb
file
="
0170
"
n
="
170
"
rhead
="
FED. COMMANDINI
"/>
& </
s
>
<
s
xml:id
="
echoid-s4257
"
xml:space
="
preserve
">denique punctum h pyramidis a b c d e f grauitatis eſſe
<
lb
/>
centrum, & </
s
>
<
s
xml:id
="
echoid-s4258
"
xml:space
="
preserve
">ita in aliis.</
s
>
<
s
xml:id
="
echoid-s4259
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4260
"
xml:space
="
preserve
">Sit conus, uel coni portio axem habens b d: </
s
>
<
s
xml:id
="
echoid-s4261
"
xml:space
="
preserve
">ſecetur que
<
lb
/>
plano per axem, quod ſectionem faciat triangulum a b c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4262
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4263
"
xml:space
="
preserve
">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </
s
>
<
s
xml:id
="
echoid-s4264
"
xml:space
="
preserve
">
<
lb
/>
Dico punctum e coni, uel coni portionis, grauitatis
<
lb
/>
eſſe centrum. </
s
>
<
s
xml:id
="
echoid-s4265
"
xml:space
="
preserve
">Sienim fieri poteſt, ſit centrum f: </
s
>
<
s
xml:id
="
echoid-s4266
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4267
"
xml:space
="
preserve
">pro-
<
lb
/>
ducatur e f extra figuram in g. </
s
>
<
s
xml:id
="
echoid-s4268
"
xml:space
="
preserve
">quam uero proportionem
<
lb
/>
habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
<
lb
/>
eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
<
lb
/>
cium, in quo h. </
s
>
<
s
xml:id
="
echoid-s4269
"
xml:space
="
preserve
">Itaque in circulo, uel ellipſi plane deſcri-
<
lb
/>
batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
<
lb
/>
tur portiones ſint minores ſpacio h: </
s
>
<
s
xml:id
="
echoid-s4270
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4271
"
xml:space
="
preserve
">intelligatur pyra-
<
lb
/>
mis baſim habens rectilineam figuram a K l m c n o p, & </
s
>
<
s
xml:id
="
echoid-s4272
"
xml:space
="
preserve
">
<
lb
/>
axem b d; </
s
>
<
s
xml:id
="
echoid-s4273
"
xml:space
="
preserve
">cuius quidem grauitatis centrum erit punctum
<
lb
/>
e, ut iam demonſtrauimus. </
s
>
<
s
xml:id
="
echoid-s4274
"
xml:space
="
preserve
">Et quoniam portiones ſunt
<
lb
/>
minores ſpacio h, circulus, uel ellipſis ad portiones ma-
<
lb
/>
<
figure
xlink:label
="
fig-0170-01
"
xlink:href
="
fig-0170-01a
"
number
="
125
">
<
image
file
="
0170-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01
"/>
</
figure
>
iorem proportionem habet, quam g e a d e f. </
s
>
<
s
xml:id
="
echoid-s4275
"
xml:space
="
preserve
">ſed ut circu-
<
lb
/>
lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
<
lb
/>
conus, uel coni portio ad pyramidem, quæ figuram rectili-
<
lb
/>
neam pro baſi habet; </
s
>
<
s
xml:id
="
echoid-s4276
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4277
"
xml:space
="
preserve
">altitudinem æqualem: </
s
>
<
s
xml:id
="
echoid-s4278
"
xml:space
="
preserve
">etenim </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>