Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4256" xml:space="preserve">
              <pb file="0170" n="170" rhead="FED. COMMANDINI"/>
            & </s>
            <s xml:id="echoid-s4257" xml:space="preserve">denique punctum h pyramidis a b c d e f grauitatis eſſe
              <lb/>
            centrum, & </s>
            <s xml:id="echoid-s4258" xml:space="preserve">ita in aliis.</s>
            <s xml:id="echoid-s4259" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4260" xml:space="preserve">Sit conus, uel coni portio axem habens b d: </s>
            <s xml:id="echoid-s4261" xml:space="preserve">ſecetur que
              <lb/>
            plano per axem, quod ſectionem faciat triangulum a b c:
              <lb/>
            </s>
            <s xml:id="echoid-s4262" xml:space="preserve">& </s>
            <s xml:id="echoid-s4263" xml:space="preserve">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </s>
            <s xml:id="echoid-s4264" xml:space="preserve">
              <lb/>
            Dico punctum e coni, uel coni portionis, grauitatis
              <lb/>
            eſſe centrum. </s>
            <s xml:id="echoid-s4265" xml:space="preserve">Sienim fieri poteſt, ſit centrum f: </s>
            <s xml:id="echoid-s4266" xml:space="preserve">& </s>
            <s xml:id="echoid-s4267" xml:space="preserve">pro-
              <lb/>
            ducatur e f extra figuram in g. </s>
            <s xml:id="echoid-s4268" xml:space="preserve">quam uero proportionem
              <lb/>
            habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
              <lb/>
            eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
              <lb/>
            cium, in quo h. </s>
            <s xml:id="echoid-s4269" xml:space="preserve">Itaque in circulo, uel ellipſi plane deſcri-
              <lb/>
            batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
              <lb/>
            tur portiones ſint minores ſpacio h: </s>
            <s xml:id="echoid-s4270" xml:space="preserve">& </s>
            <s xml:id="echoid-s4271" xml:space="preserve">intelligatur pyra-
              <lb/>
            mis baſim habens rectilineam figuram a K l m c n o p, & </s>
            <s xml:id="echoid-s4272" xml:space="preserve">
              <lb/>
            axem b d; </s>
            <s xml:id="echoid-s4273" xml:space="preserve">cuius quidem grauitatis centrum erit punctum
              <lb/>
            e, ut iam demonſtrauimus. </s>
            <s xml:id="echoid-s4274" xml:space="preserve">Et quoniam portiones ſunt
              <lb/>
            minores ſpacio h, circulus, uel ellipſis ad portiones ma-
              <lb/>
              <figure xlink:label="fig-0170-01" xlink:href="fig-0170-01a" number="125">
                <image file="0170-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01"/>
              </figure>
            iorem proportionem habet, quam g e a d e f. </s>
            <s xml:id="echoid-s4275" xml:space="preserve">ſed ut circu-
              <lb/>
            lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
              <lb/>
            conus, uel coni portio ad pyramidem, quæ figuram rectili-
              <lb/>
            neam pro baſi habet; </s>
            <s xml:id="echoid-s4276" xml:space="preserve">& </s>
            <s xml:id="echoid-s4277" xml:space="preserve">altitudinem æqualem: </s>
            <s xml:id="echoid-s4278" xml:space="preserve">etenim </s>
          </p>
        </div>
      </text>
    </echo>