Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0180
"
n
="
180
"
rhead
="
FED. COMMANDINI
"/>
fruſtum a d. </
s
>
<
s
xml:space
="
preserve
">Sed pyramis q æqualis eſt fruſto à pyramide
<
lb
/>
abſciſſo, ut dem onſtrauimus. </
s
>
<
s
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:space
="
preserve
">conus, uel coni por-
<
lb
/>
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
<
lb
/>
conſtat, & </
s
>
<
s
xml:space
="
preserve
">altitudo eadem, quæ fruſti: </
s
>
<
s
xml:space
="
preserve
">ipſi fruſto a d eſt æ-
<
lb
/>
qualis. </
s
>
<
s
xml:space
="
preserve
">atque illud eſt, quod demonſtrare oportebat.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
4
">
<
note
position
="
left
"
xlink:label
="
note-0178-01
"
xlink:href
="
note-0178-01a
"
xml:space
="
preserve
">9. huius</
note
>
<
note
position
="
left
"
xlink:label
="
note-0178-02
"
xlink:href
="
note-0178-02a
"
xml:space
="
preserve
">2. duode-
<
lb
/>
cimi.</
note
>
<
figure
xlink:label
="
fig-0178-01
"
xlink:href
="
fig-0178-01a
">
<
image
file
="
0178-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0178-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0178-03
"
xlink:href
="
note-0178-03a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
<
note
position
="
right
"
xlink:label
="
note-0179-01
"
xlink:href
="
note-0179-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
91
">
<
head
xml:space
="
preserve
">THEOREMA XXI. PROPOSITIO XXVI.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Cvivslibet</
emph
>
fruſti à pyramide, uel cono,
<
lb
/>
uel coni portione abſcisſi, centrum grauitatis eſt
<
lb
/>
in axe, ita ut eo primum in duas portiones diui-
<
lb
/>
ſo, portio ſuperior, quæ minorem baſim attingit
<
lb
/>
ad portionem reliquam eam habeat proportio-
<
lb
/>
nem, quam duplum lateris, uel diametri maioris
<
lb
/>
baſis, vnà cum latere, uel diametro minoris, ipſi
<
lb
/>
reſpondente, habet ad duplum lateris, uel diame-
<
lb
/>
tri minoris baſis vnà cũ latere, uel diametro ma-
<
lb
/>
ioris: </
s
>
<
s
xml:space
="
preserve
">deinde à puncto diuiſionis quarta parte ſu
<
lb
/>
perioris portionis in ipſa ſumpta: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">rurſus ab in-
<
lb
/>
ferioris portionis termino, qui eſt ad baſim maio
<
lb
/>
rem, ſumpta quarta parte totius axis: </
s
>
<
s
xml:space
="
preserve
">centrum ſit
<
lb
/>
in linea, quæ his finibus continetur, atque in eo li
<
lb
/>
neæ puncto, quo ſic diuiditur, ut tota linea ad par
<
lb
/>
tem propinquiorem minori baſi, eãdem propor-
<
lb
/>
tionem habeat, quam fruſtum ad pyramidẽ, uel
<
lb
/>
conum, uel coni portionem, cuius baſis ſit ea-
<
lb
/>
dem, quæ baſis maior, & </
s
>
<
s
xml:space
="
preserve
">altitudo fruſti altitudini
<
lb
/>
æqualis.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>