Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (35) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <pb o="35" file="0181" n="181" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
              <lb/>
            beat abſciſſum: </s>
            <s xml:space="preserve">cuius maior baſis triangulum a b c, minor
              <lb/>
            d e f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis g h. </s>
            <s xml:space="preserve">ducto autem plano per axem & </s>
            <s xml:space="preserve">per lineã
              <lb/>
            d a, quod ſectionem faciat d a k l quadrilaterum; </s>
            <s xml:space="preserve">puncta
              <lb/>
            K l lineas b c, e f bifariam ſecabunt. </s>
            <s xml:space="preserve">nam cum g h ſit axis
              <lb/>
            ſruſti: </s>
            <s xml:space="preserve">erit h centrum grauitatis trianguli a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">g
              <lb/>
            centrum trianguli d e f: </s>
            <s xml:space="preserve">cen-
              <lb/>
              <anchor type="figure" xlink:label="fig-0181-01a" xlink:href="fig-0181-01"/>
              <anchor type="note" xlink:label="note-0181-01a" xlink:href="note-0181-01"/>
            trum uero cuiuslibet triangu
              <lb/>
            li eſt in recta linea, quæ ab an-
              <lb/>
            gulo ipſius ad dimidiã baſim
              <lb/>
            ducitur ex decimatertia primi
              <lb/>
            libri Archimedis de cẽtro gra
              <lb/>
            uitatis planorum. </s>
            <s xml:space="preserve">quare cen-
              <lb/>
              <anchor type="note" xlink:label="note-0181-02a" xlink:href="note-0181-02"/>
            trũ grauitatis trapezii b c f e
              <lb/>
            eſt in linea _K_ l, quod ſit m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à
              <lb/>
            puncto m ad axem ducta m n
              <lb/>
            ipſi a k, uel d l æquidiſtante;
              <lb/>
            </s>
            <s xml:space="preserve">erit axis g h diuiſus in portio-
              <lb/>
            nes g n, n h, quas diximus: </s>
            <s xml:space="preserve">ean
              <lb/>
            dem enim proportionem ha-
              <lb/>
            bet g n ad n h, quã l m ad m _k_. </s>
            <s xml:space="preserve">
              <lb/>
            At l m ad m K habet eam, quã
              <lb/>
            duplum lateris maioris baſis
              <lb/>
            b c una cum latere minoris e f
              <lb/>
            ad duplum lateris e f unà cum
              <lb/>
            later b c, ex ultima eiuſdem
              <lb/>
            libri Archimedis. </s>
            <s xml:space="preserve">Itaque à li-
              <lb/>
            nea n g abſcindatur, quarta
              <lb/>
            pars, quæ ſit n p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ab axe h g abſcindatur itidem
              <lb/>
            quarta pars h o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quam proportionem habet fruſtum ad
              <lb/>
            pyramidem, cuius maior baſis eſt triangulum a b c, & </s>
            <s xml:space="preserve">alti-
              <lb/>
            tudo ipſi æqualis; </s>
            <s xml:space="preserve">habeat o p ad p q. </s>
            <s xml:space="preserve">Dico centrum graui-
              <lb/>
            tatis fruſti eſſe in linea p o, & </s>
            <s xml:space="preserve">in puncto q. </s>
            <s xml:space="preserve">namque ipſum
              <lb/>
            eſſe in linea g h manifeſte conſtat. </s>
            <s xml:space="preserve">protractis enim fruſti pla</s>
          </p>
        </div>
      </text>
    </echo>