Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(41)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div278
"
type
="
section
"
level
="
1
"
n
="
93
">
<
p
>
<
s
xml:id
="
echoid-s4858
"
xml:space
="
preserve
">
<
pb
o
="
41
"
file
="
0193
"
n
="
193
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
noidis ad portiones reliquas, ita alia linea, quæ ſit 1
<
emph
style
="
sc
">K</
emph
>
ad
<
lb
/>
k e: </
s
>
<
s
xml:id
="
echoid-s4859
"
xml:space
="
preserve
">erit 1k maior, quam b k: </
s
>
<
s
xml:id
="
echoid-s4860
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4861
"
xml:space
="
preserve
">ideo punctum l extra por-
<
lb
/>
tionem cadet. </
s
>
<
s
xml:id
="
echoid-s4862
"
xml:space
="
preserve
">Quoniã
<
lb
/>
<
figure
xlink:label
="
fig-0193-01
"
xlink:href
="
fig-0193-01a
"
number
="
143
">
<
image
file
="
0193-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0193-01
"/>
</
figure
>
igitur à figura circum-
<
lb
/>
ſcripta, cuius grauitatis
<
lb
/>
centrum eſt k, aufertur
<
lb
/>
portio conoidis, cuius
<
lb
/>
centrum e. </
s
>
<
s
xml:id
="
echoid-s4863
"
xml:space
="
preserve
">habetq; </
s
>
<
s
xml:id
="
echoid-s4864
"
xml:space
="
preserve
">l K
<
lb
/>
ad K e eam proportio-
<
lb
/>
nem, quam portio co-
<
lb
/>
noidis ad reliquas por-
<
lb
/>
tiones; </
s
>
<
s
xml:id
="
echoid-s4865
"
xml:space
="
preserve
">erit punctum l
<
lb
/>
extra portionem cadẽs,
<
lb
/>
centrum magnitudinis
<
lb
/>
ex reliquis portionibus compoſitæ. </
s
>
<
s
xml:id
="
echoid-s4866
"
xml:space
="
preserve
">illud autem fieri nullo
<
lb
/>
modo poteſt. </
s
>
<
s
xml:id
="
echoid-s4867
"
xml:space
="
preserve
">quare conſtat lineam k e ipſa g linea propoſi
<
lb
/>
ta minorem eſſe.</
s
>
<
s
xml:id
="
echoid-s4868
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4869
"
xml:space
="
preserve
">Rurfus inſcribatur portioni figura, uidelicet cylindr us
<
lb
/>
m n, ut ſit ipſius altitudo
<
lb
/>
<
figure
xlink:label
="
fig-0193-02
"
xlink:href
="
fig-0193-02a
"
number
="
144
">
<
image
file
="
0193-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0193-02
"/>
</
figure
>
æqualis dimidio axis b d:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4870
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4871
"
xml:space
="
preserve
">quam proportionem
<
lb
/>
habet b e ad g, habeat m n
<
lb
/>
cylindrus ad ſolidum o. </
s
>
<
s
xml:id
="
echoid-s4872
"
xml:space
="
preserve
">
<
lb
/>
inſcrib itur deinde eidem
<
lb
/>
alia figura, ita ut portio-
<
lb
/>
nes reliquæ ſint ſolido o
<
lb
/>
minores: </
s
>
<
s
xml:id
="
echoid-s4873
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4874
"
xml:space
="
preserve
">centrum gra
<
lb
/>
uitatis figuræ ſit p. </
s
>
<
s
xml:id
="
echoid-s4875
"
xml:space
="
preserve
">Dico
<
lb
/>
lineam p e ipſa g minorẽ
<
lb
/>
eſſe. </
s
>
<
s
xml:id
="
echoid-s4876
"
xml:space
="
preserve
">ſi enim non ſit mi-
<
lb
/>
nor, eodem, quo ſupra modo demonſtrabimus figuram in
<
lb
/>
ſcriptam ad reliquas portiones maiorem proportionem
<
lb
/>
habere, quàm b e ad e p. </
s
>
<
s
xml:id
="
echoid-s4877
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4878
"
xml:space
="
preserve
">ſi fiat alia linea l e ad e p, ut eſt
<
lb
/>
figura inſcripta ad reliquas portiones, pũctum l extra </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>