Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (12) of 213 > >|
DE CENTRO GRA VIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="12" file="0135" n="135" rhead="DE CENTRO GRA VIT. SOLID."/>
            Itaque ſolidi parallelepipedi y γ centrum grauitatis eſt in
              <lb/>
            linea δ: </s>
            <s xml:space="preserve">ſolidi u β centrum eſt in linea ε η: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſolidi s z in li
              <lb/>
            nea η m, quæ quidem lineæ axes ſunt, cum planorum oppo
              <lb/>
            ſitorum centra coniungant. </s>
            <s xml:space="preserve">ergo magnitudinis ex his ſoli
              <lb/>
            dis compoſitæ centrum grauitatis eſt in linea δ m, quod ſit
              <lb/>
            θ; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta θ o producatur: </s>
            <s xml:space="preserve">à puncto autem h ducatur h μ
              <lb/>
            ipſi m κ æquidiſtans, quæ cum θ o in μ conueniat. </s>
            <s xml:space="preserve">triangu
              <lb/>
            lum igitur g h κ ad omnia triangula g z r, r β t, t γ x, x δ k,
              <lb/>
            κ δ y, y u, u s, s α h eandem habet proportionem, quam h m
              <lb/>
            ad m q; </s>
            <s xml:space="preserve">hoc eſt, quam μ θ ad θ λ: </s>
            <s xml:space="preserve">nam ſi h m, μ θ produci in
              <lb/>
            telligantur, quouſque coeant; </s>
            <s xml:space="preserve">erit ob linearum q y, m k æ-
              <lb/>
            quidiſtantiam, ut h q ad q m, ita μ λ ad ad λ θ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">componen
              <lb/>
            do, ut h m ad m q, ita μ θ ad θ λ. </s>
            <s xml:space="preserve">linea uero θ o maior eſt,
              <lb/>
            quàm θ λ: </s>
            <s xml:space="preserve">habebit igitur μ θ ad θ λ maiorem proportio-
              <lb/>
              <anchor type="note" xlink:label="note-0135-01a" xlink:href="note-0135-01"/>
            nem, quàm ad θ o. </s>
            <s xml:space="preserve">quare triangulum etiam g h k ad omnia
              <lb/>
            iam dicta triangula maiorem proportionẽ habebit, quàm
              <lb/>
            μ θ ad θ o. </s>
            <s xml:space="preserve">ſed ut triangulũ g h k ad omnia triangula, ita to-
              <lb/>
            tũ priſma a f ad omnia priſmata g z r, r β t, t γ x, x δ k, k δ y,
              <lb/>
            y u, u s, s α h: </s>
            <s xml:space="preserve">quoniam enim ſolida parallelepipeda æque al
              <lb/>
            ta, eandem inter ſe proportionem habent, quam baſes; </s>
            <s xml:space="preserve">ut
              <lb/>
            ex trigeſimaſecunda undecimi elementorum conſtat. </s>
            <s xml:space="preserve">ſunt
              <lb/>
              <anchor type="note" xlink:label="note-0135-02a" xlink:href="note-0135-02"/>
            autem ſolida parallelepipeda priſmatum triangulares ba-
              <lb/>
            ſes habentium dupla: </s>
            <s xml:space="preserve">ſequitur, ut etiam huiuſmodi priſ-
              <lb/>
              <anchor type="note" xlink:label="note-0135-03a" xlink:href="note-0135-03"/>
            matainter ſe ſint, ſicut eorum baſes. </s>
            <s xml:space="preserve">ergo totum priſma ad
              <lb/>
            omnia priſmata maiorem proportionem habet, quam μ θ
              <lb/>
            ad θ o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuidendo ſolida parallelepipeda y γ, u β, s z ad o-
              <lb/>
              <anchor type="note" xlink:label="note-0135-04a" xlink:href="note-0135-04"/>
            mnia prifmata proportionem habent maiorem, quàm μ o
              <lb/>
            ad o θ. </s>
            <s xml:space="preserve">fiat @ o ad o θ, ut folida parallelepipeda y γ, u β, s z ad
              <lb/>
            omnia priſmata. </s>
            <s xml:space="preserve">Itaque cum à priſmate a f, cuius cẽtrum
              <lb/>
            grauitatis eſt o, auferatur magnitudo ex ſolidis parallelepi
              <lb/>
            pedis y γ, u β, s z conſtans: </s>
            <s xml:space="preserve">atque ipfius grauitatis centrum
              <lb/>
            ſit θ: </s>
            <s xml:space="preserve">reliquæ magnitudinis, quæ ex omnibus priſmatibus
              <lb/>
            conſtat, grauitatis centrum erit in linea θ o producta: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            in puncto ν, ex o ctaua propoſitione eiuſdem libri Archi-</s>
          </p>
        </div>
      </text>
    </echo>