Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0138" n="138" rhead="FED. COMMANDINI"/>
            ad priſma a b c e f g. </s>
            <s xml:space="preserve">quare linea s y ad y t eandem propor-
              <lb/>
            tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
              <lb/>
            </s>
            <s xml:space="preserve">Sed priſmatis a b c e f g centrum grauitatis eſts: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c e h g centrum t. </s>
            <s xml:space="preserve">magnitudinis igitur ex his compo
              <lb/>
            ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
              <lb/>
            ctum y; </s>
            <s xml:space="preserve">medium ſcilicet axis u x, qui oppoſitorum plano-
              <lb/>
            rum centra coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0137-01" xlink:href="fig-0137-01a">
              <image file="0137-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0137-01"/>
            </figure>
            <note position="right" xlink:label="note-0137-01" xlink:href="note-0137-01a" xml:space="preserve">5. huius.</note>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit priſma baſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quod ei opponitur ſit f g h _K_ l: </s>
            <s xml:space="preserve">ſec enturq; </s>
            <s xml:space="preserve">a f, b g, c h,
              <lb/>
            d _k_, el bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones ducto plano, ſectio ſit pẽ
              <lb/>
            tagonũ m n o p q. </s>
            <s xml:space="preserve">deinde iuncta e b per lineas le, e b aliud
              <lb/>
            planum ducatur, diuidẽs priſ
              <lb/>
              <anchor type="figure" xlink:label="fig-0138-01a" xlink:href="fig-0138-01"/>
            ma a k in duo priſmata, in priſ
              <lb/>
            ma ſcilicet al, cuius plana op-
              <lb/>
            poſita ſint triangula a b e f g l:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in prima b _k_ cuius plana op
              <lb/>
            poſita ſint quadrilatera b c d e
              <lb/>
            g h _k_ l. </s>
            <s xml:space="preserve">Sint autem triangulo-
              <lb/>
            rum a b e, f g l centra grauita
              <lb/>
            tis puncta r ſ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c d e, g h _k_ l
              <lb/>
            quadrilaterorum centra tu: </s>
            <s xml:space="preserve">
              <lb/>
            iunganturq; </s>
            <s xml:space="preserve">r s, t u o ccurren-
              <lb/>
            tes plano m n o p q in punctis
              <lb/>
            x y. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">itidem iungãtur r t, ſu,
              <lb/>
            x y. </s>
            <s xml:space="preserve">erit in linea r t cẽtrum gra
              <lb/>
            uitatis pentagoni a b c d e; </s>
            <s xml:space="preserve">
              <lb/>
            quod ſit z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea ſu cen-
              <lb/>
            trum pentagoni f g h k l: </s>
            <s xml:space="preserve">ſit au
              <lb/>
            tem χ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur z χ, quæ di-
              <lb/>
            cto plano in χ occurrat. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">
              <lb/>
            punctum x eſt centrum graui
              <lb/>
            tatis trianguli m n q, ac priſ-
              <lb/>
            matis al: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">y grauitatis centrum quadrilateri n o p q, ac
              <lb/>
            priſmatis b k. </s>
            <s xml:space="preserve">quare y centrum erit pentagoni m n o p q. </s>
            <s xml:space="preserve">&</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>