Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (20) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="79">
          <p>
            <s xml:space="preserve">
              <pb o="20" file="0151" n="151" rhead="DE CENTRO GRAVIT. SOLID."/>
            beat eam, quam χ τ ad τ f. </s>
            <s xml:space="preserve">erit diuidendo ut χ f ad f τ, ita fi
              <lb/>
            gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
              <lb/>
            midem. </s>
            <s xml:space="preserve">Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
              <lb/>
            punctum f, ſolida figura inſcripta auferatur, cuius centrũ
              <lb/>
            τ: </s>
            <s xml:space="preserve">reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
              <lb/>
            eſtintra pyramidem, centrum grauitatis erit in linea τ f
              <lb/>
            producta, & </s>
            <s xml:space="preserve">in puncto χ. </s>
            <s xml:space="preserve">quod fieri non poteſt. </s>
            <s xml:space="preserve">Sequitur
              <lb/>
            igitur, ut centrum grauitatis pyramidis in linea d e; </s>
            <s xml:space="preserve">hoc
              <lb/>
            eſt in eius axe conſiſtat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0150-01" xlink:href="fig-0150-01a">
              <image file="0150-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0150-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit conus, uel coni portio, cuius axis b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano
              <lb/>
            per axem, ut ſectio ſit triangulum a b c. </s>
            <s xml:space="preserve">Dico centrum gra
              <lb/>
            uitatis ipſius eſſe in linea b d. </s>
            <s xml:space="preserve">Sit enim, ſi fieri poteſt, centrũ
              <lb/>
              <anchor type="figure" xlink:label="fig-0151-01a" xlink:href="fig-0151-01"/>
            e: </s>
            <s xml:space="preserve">perq; </s>
            <s xml:space="preserve">e ducatur e f axi æquidiſtans: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quam propor-
              <lb/>
            tionem habet c d ad d f, habeat conus, uel coni portio ad
              <lb/>
            ſolidum g. </s>
            <s xml:space="preserve">inſcribatur ergo in cono, uel coni portione ſoli</s>
          </p>
        </div>
      </text>
    </echo>