Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (34) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <p>
            <s xml:space="preserve">
              <pb o="34" file="0179" n="179" rhead="DE CENTRO GRAVIT. SOLID."/>
            culi, uel ellipſes c d, e ſ a b ad circulum, uel ellipſim a b. </s>
            <s xml:space="preserve">In-
              <lb/>
            telligatur pyramis q baſim habens æqualem tribus rectan
              <lb/>
            gulis a b, e f, c d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altitudinem eãdem, quam fruſtum a d.
              <lb/>
            </s>
            <s xml:space="preserve">intelligatur etiam conus, uel coni portio q, eadem altitudi
              <lb/>
            ne, cuius baſis ſit tribus circulis, uel tribus ellipſibus a b,
              <lb/>
            e f, c d æqualis. </s>
            <s xml:space="preserve">poſtremo intelligatur pyramis a l b, cuius
              <lb/>
            baſis ſit rectangulum m n o p, & </s>
            <s xml:space="preserve">altitudo eadem, quæ fru-
              <lb/>
            ſti: </s>
            <s xml:space="preserve">itemq, intelligatur conus, uel coni portio a l b, cuius
              <lb/>
            baſis circulus, uel ellipſis circa diametrum a b, & </s>
            <s xml:space="preserve">eadem al
              <lb/>
            titudo. </s>
            <s xml:space="preserve">ut igitur rectangula a b, e f, c d ad rectangulum a b,
              <lb/>
              <anchor type="note" xlink:label="note-0179-01a" xlink:href="note-0179-01"/>
            ita pyramis q ad pyramidem a l b; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut circuli, uel ellip-
              <lb/>
            ſes a b, e f, c d ad a b circulum, uel ellipſim, ita conus, uel co
              <lb/>
            ni portio q ad conum, uel coni portionem a l b. </s>
            <s xml:space="preserve">conus
              <lb/>
            igitur, uel coni portio q ad conum, uel coni portionem
              <lb/>
            a l b eſt, ut pyramis q ad pyramidem a l b. </s>
            <s xml:space="preserve">ſed pyramis
              <lb/>
            a l b ad pyramidem a g b eſt, ut altitudo ad altitudinem, ex
              <lb/>
            20. </s>
            <s xml:space="preserve">huius: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita eſt conus, uel coni portio al b ad conum,
              <lb/>
            uel coni portionem a g b ex 14. </s>
            <s xml:space="preserve">duodecimi elementorum,
              <lb/>
            & </s>
            <s xml:space="preserve">ex iis, quæ nos demonſtrauimus in commentariis in un-
              <lb/>
            decimam de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidibus, propoſitione
              <lb/>
            quarta. </s>
            <s xml:space="preserve">pyramis autem a g b ad pyramidem c g d propor-
              <lb/>
            tionem habet compoſitam ex proportione baſium & </s>
            <s xml:space="preserve">pro
              <lb/>
            portione altitudinum, ex uigeſima prima huius: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimili-
              <lb/>
            ter conus, uel coni portio a g b a d conum, uel coni portio-
              <lb/>
            nem c g d proportionem habet compoſitã ex eiſdem pro-
              <lb/>
            portionibus, per ea, quæ in dictis commentariis demon-
              <lb/>
            ſtrauimus, propoſitione quinta, & </s>
            <s xml:space="preserve">ſexta: </s>
            <s xml:space="preserve">altitudo enim in
              <lb/>
            utriſque eadem eſt, & </s>
            <s xml:space="preserve">baſes inter ſe ſe eandem habent pro-
              <lb/>
            portionem. </s>
            <s xml:space="preserve">ergo ut pyramis a g b ad pyramidem c g d, ita
              <lb/>
            eſt conus, uel coni portio a g b ad a g d conum, uel coni
              <lb/>
            portionem: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per conuerſionẽ rationis, ut pyramis a g b
              <lb/>
            ad fruſtū à pyramide abſciſſum, ita conus uel coni portio
              <lb/>
            a g b ad fruſtum a d. </s>
            <s xml:space="preserve">ex æquali igitur, ut pyramis q ad fru-
              <lb/>
            ſtum à pyramide abſciſſum, ita conus uel coni portio q ad</s>
          </p>
        </div>
      </text>
    </echo>