Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
182FED. COMMANDINI nis, quouſque in unum punctum r conueniant; erit pyra-
midis a b c r, &
pyramidis d e f r grauitatis centrum in li-
nea r h.
ergo & reliquæ magnitudinis, uidelicet fruſti cen-
trum in eadem linea neceſſario comperietur.
Iungantur
d b, d c, d h, d m:
& per lineas d b, d c ducto altero plano
intelligatur fruſtum in duas pyramides diuiſum:
in pyra-
midem quidem, cuius baſis eſt triangulum a b c, uertex d:
& in eam, cuius idem uertex, & baſis trapezium b c f e. erit
igitur pyramidis a b c d axis d h, &
pyramidis b c f e d axis
d m:
atque erunt tres axes g h, d h, d m in eodem plano
d a K l.
ducatur præterea per o linea ſt ip ſi a K æquidiſtãs,
quæ lineam d h in u ſecet:
per p uero ducatur x y æquidi-
ſtans eidem, ſecansque d m in
135[Figure 135] z:
& iungatur z u, quæ ſecet
g h in φ.
tranſibit ea per q: &
erunt φ q unum, atque idem
pun ctum;
ut inferius appare-
bit.
Quoniam igitur linea u o
æ quidiſtat ipſi d g, erit d u ad
112. ſexti. u h, ut g o ad o h.
Sed g o tri-
pla eſt o h.
quare & d u ipſius
u h eſt tripla:
& ideo pyrami-
dis a b c d centrum grauitatis
erit punctum 11.
Rurſus quo-
niam z y ipſi d l æquidiſtat, d z
a d z m eſt, utly ad y m:
eſtque
ly ad y m, ut g p ad p n.
ergo
d z ad z m eſt, ut g p ad p n.
Quòd cum g p ſit tripla p n;
erit etiam d z ipſius z m tri-
pla.
atque ob eandem cauſ-
ſam punctum z eſt centrũ gra-
uitatis pyramidis b c f e d.
iun
ctaigitur z u, in ea erit

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index