Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0142" n="142" rhead="FED. COMMANDINI"/>
              <anchor type="figure" xlink:label="fig-0142-01a" xlink:href="fig-0142-01"/>
            linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
              <lb/>
            gura rectilinea y. </s>
            <s xml:space="preserve">ergo pyramis x pyramide y minor erit.
              <lb/>
            </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">maior; </s>
            <s xml:space="preserve">quod fieri nõ poteſt. </s>
            <s xml:space="preserve">At ſi conus, uel coni por
              <lb/>
            tio x ponatur minor pyramide y: </s>
            <s xml:space="preserve">ſit alter conus æque al-
              <lb/>
            tus, uel altera coni portio χ ipſi pyramidi y æqualis. </s>
            <s xml:space="preserve">erit
              <lb/>
            eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
              <lb/>
            quorum exceſſus ſit ſpacium ω. </s>
            <s xml:space="preserve">Siigitur in circulo, uel elli-
              <lb/>
            pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
              <lb/>
            ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
              <lb/>
            culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">p_y_ramis in
              <lb/>
            ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
              <lb/>
            nor p_y_ramide_y_. </s>
            <s xml:space="preserve">eſt ergo ut χ figura rectilinea ad figuram
              <lb/>
            rectilineam _y_, ita pyramis χ ad pyramidem _y_. </s>
            <s xml:space="preserve">quare cum
              <lb/>
            figura rectilinea χ ſit maior figura_y_: </s>
            <s xml:space="preserve">erit & </s>
            <s xml:space="preserve">p_y_ramis χ p_y_-
              <lb/>
            ramide_y_ maior. </s>
            <s xml:space="preserve">ſed erat minor; </s>
            <s xml:space="preserve">quod rurſus fieri non po-
              <lb/>
            teſt. </s>
            <s xml:space="preserve">non eſt igitur conus, uel coni portio x neque maior,
              <lb/>
            neque minor p_y_ramide_y_. </s>
            <s xml:space="preserve">ergo ipſi neceſſario eſt æqualis. </s>
            <s xml:space="preserve">
              <lb/>
            Itaque quoniam ut conus ad conum, uel coni portio ad co</s>
          </p>
        </div>
      </text>
    </echo>