Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < (21) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="79">
          <p>
            <s xml:space="preserve">
              <pb o="21" file="0153" n="153" rhead="DE CENTRO GRAVIT. SOLID."/>
            diuidendo figura ſolida inſcripta ad dictam exceſſus par-
              <lb/>
            tem, ut τ e ad e ρ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam à cono, ſeu coni portione,
              <lb/>
            cuius grauitatis centrum eſt e, aufertur figura inſcripta,
              <lb/>
            cuius centrum ρ: </s>
            <s xml:space="preserve">reſiduæ magnitudinis compoſitæ ex par
              <lb/>
            te exceſſus, quæ intra coni, uel coni portionis ſuperficiem
              <lb/>
            continetur, centrum grauitatis erit in linea ζ e protracta,
              <lb/>
            atque in puncto τ. </s>
            <s xml:space="preserve">quod eſt abſurdum. </s>
            <s xml:space="preserve">cõſtat ergo centrũ
              <lb/>
            grauitatis coni, uel coni portionis, eſſe in axe b d: </s>
            <s xml:space="preserve">quod de
              <lb/>
            monſcrandum propoſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0151-01" xlink:href="fig-0151-01a">
              <image file="0151-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0151-01"/>
            </figure>
            <figure xlink:label="fig-0152-01" xlink:href="fig-0152-01a">
              <image file="0152-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0152-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="80">
          <head xml:space="preserve">THE OREMA XI. PROPOSITIO XV.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portionis ſphæræ uel ſphæroidis,
              <lb/>
            quæ dimidia maior non ſit: </s>
            <s xml:space="preserve">itemq́; </s>
            <s xml:space="preserve">cuiuslibet por
              <lb/>
            tionis conoidis, uel abſciſſæ plano ad axem recto,
              <lb/>
            uel non recto, centrum grauitatis in axe con-
              <lb/>
            ſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Demonſtratio ſimilis erit ei, quam ſupra in cono, uel co
              <lb/>
            ni portione attulimus, ne toties eadem fruſtra iterentur.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <image file="0153-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0153-01"/>
          </figure>
        </div>
      </text>
    </echo>