Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0170
"
n
="
170
"
rhead
="
FED. COMMANDINI
"/>
& </
s
>
<
s
xml:space
="
preserve
">denique punctum h pyramidis a b c d e f grauitatis eſſe
<
lb
/>
centrum, & </
s
>
<
s
xml:space
="
preserve
">ita in aliis.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
note
position
="
right
"
xlink:label
="
note-0168-01
"
xlink:href
="
note-0168-01a
"
xml:space
="
preserve
">2. ſexti.</
note
>
<
figure
xlink:label
="
fig-0169-01
"
xlink:href
="
fig-0169-01a
">
<
image
file
="
0169-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0169-01
"/>
</
figure
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit conus, uel coni portio axem habens b d: </
s
>
<
s
xml:space
="
preserve
">ſecetur que
<
lb
/>
plano per axem, quod ſectionem faciat triangulum a b c:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
Dico punctum e coni, uel coni portionis, grauitatis
<
lb
/>
eſſe centrum. </
s
>
<
s
xml:space
="
preserve
">Sienim fieri poteſt, ſit centrum f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">pro-
<
lb
/>
ducatur e f extra figuram in g. </
s
>
<
s
xml:space
="
preserve
">quam uero proportionem
<
lb
/>
habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
<
lb
/>
eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
<
lb
/>
cium, in quo h. </
s
>
<
s
xml:space
="
preserve
">Itaque in circulo, uel ellipſi plane deſcri-
<
lb
/>
batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
<
lb
/>
tur portiones ſint minores ſpacio h: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">intelligatur pyra-
<
lb
/>
mis baſim habens rectilineam figuram a K l m c n o p, & </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
axem b d; </
s
>
<
s
xml:space
="
preserve
">cuius quidem grauitatis centrum erit punctum
<
lb
/>
e, ut iam demonſtrauimus. </
s
>
<
s
xml:space
="
preserve
">Et quoniam portiones ſunt
<
lb
/>
minores ſpacio h, circulus, uel ellipſis ad portiones ma-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0170-01a
"
xlink:href
="
fig-0170-01
"/>
iorem proportionem habet, quam g e a d e f. </
s
>
<
s
xml:space
="
preserve
">ſed ut circu-
<
lb
/>
lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
<
lb
/>
conus, uel coni portio ad pyramidem, quæ figuram rectili-
<
lb
/>
neam pro baſi habet; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">altitudinem æqualem: </
s
>
<
s
xml:space
="
preserve
">etenim ſu-</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>