Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div258
"
type
="
section
"
level
="
1
"
n
="
88
">
<
p
>
<
s
xml:id
="
echoid-s4303
"
xml:space
="
preserve
">
<
pb
file
="
0172
"
n
="
172
"
rhead
="
FED. COMMANDINI
"/>
Dico eas proportion ales eſſe in proportione, quæ eſt la-
<
lb
/>
teris a b adlatus d e, itaut earum maior ſit a b c e, me-
<
lb
/>
dia a d c e, & </
s
>
<
s
xml:id
="
echoid-s4304
"
xml:space
="
preserve
">minor d e f c. </
s
>
<
s
xml:id
="
echoid-s4305
"
xml:space
="
preserve
">Quoniam enim lineæ d e,
<
lb
/>
a b æquidiſtant; </
s
>
<
s
xml:id
="
echoid-s4306
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4307
"
xml:space
="
preserve
">interipſas ſunt triangula a b e, a d e;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4308
"
xml:space
="
preserve
">erit triangulum a b e
<
lb
/>
<
figure
xlink:label
="
fig-0172-01
"
xlink:href
="
fig-0172-01a
"
number
="
126
">
<
image
file
="
0172-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0172-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0172-01
"
xlink:href
="
note-0172-01a
"
xml:space
="
preserve
">1. ſextí.</
note
>
ad triangulum a d e,
<
lb
/>
ut linea a b ad lineam
<
lb
/>
d e. </
s
>
<
s
xml:id
="
echoid-s4309
"
xml:space
="
preserve
">ut autem triangu
<
lb
/>
lum a b e ad triangu-
<
lb
/>
lum a d e, ita pyramis
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-02
"
xlink:href
="
note-0172-02a
"
xml:space
="
preserve
">5. duodeci
<
lb
/>
mi.</
note
>
a b e c ad pyramidem
<
lb
/>
a d e c: </
s
>
<
s
xml:id
="
echoid-s4310
"
xml:space
="
preserve
">habent enim
<
lb
/>
altitudinem eandem,
<
lb
/>
quæ eſt à puncto c ad
<
lb
/>
planum, in quo qua-
<
lb
/>
drilaterum a b e d. </
s
>
<
s
xml:id
="
echoid-s4311
"
xml:space
="
preserve
">er-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-03
"
xlink:href
="
note-0172-03a
"
xml:space
="
preserve
">11. quinti.</
note
>
go ut a b ad d e, ita pyramis a b e c ad pyramidem a d e c.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4312
"
xml:space
="
preserve
">Rurſus quoniam æquidiſtantes ſunt a c, d f; </
s
>
<
s
xml:id
="
echoid-s4313
"
xml:space
="
preserve
">erit eadem
<
lb
/>
ratione pyramis a d c e ad pyramidem c d f e, ut a c ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0172-04
"
xlink:href
="
note-0172-04a
"
xml:space
="
preserve
">4 ſexti.</
note
>
d f. </
s
>
<
s
xml:id
="
echoid-s4314
"
xml:space
="
preserve
">Sed ut a c a l d f, ita a b ad d e, quoniam triangula
<
lb
/>
a b c, d e f ſimilia ſunt, ex nona huius. </
s
>
<
s
xml:id
="
echoid-s4315
"
xml:space
="
preserve
">quare ut pyramis
<
lb
/>
a b c e ad pyramidem a d c e, ita pyramis a d c e ad ipſam
<
lb
/>
d e f c. </
s
>
<
s
xml:id
="
echoid-s4316
"
xml:space
="
preserve
">fruſtum igitur a b c d e f diuiditur in tres pyramides
<
lb
/>
proportionales in ea proportione, quæ eſt lateris a b ad d e
<
lb
/>
latus, & </
s
>
<
s
xml:id
="
echoid-s4317
"
xml:space
="
preserve
">earum maior eſt c a b e, media a d c e, & </
s
>
<
s
xml:id
="
echoid-s4318
"
xml:space
="
preserve
">minor
<
lb
/>
d e f c. </
s
>
<
s
xml:id
="
echoid-s4319
"
xml:space
="
preserve
">quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s4320
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div260
"
type
="
section
"
level
="
1
"
n
="
89
">
<
head
xml:id
="
echoid-head96
"
xml:space
="
preserve
">PROBLEMA V. PROPOSITIO XXIIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4321
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum pyramidis, uel coni,
<
lb
/>
uel coni portionis, plano baſi æquidiſtanti ita ſe-
<
lb
/>
care, ut ſectio ſit proportionalis inter maiorem,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4322
"
xml:space
="
preserve
">minorem baſim.</
s
>
<
s
xml:id
="
echoid-s4323
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>