Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4763
"
xml:space
="
preserve
">
<
pb
file
="
0190
"
n
="
190
"
rhead
="
FED. COMMANDINI
"/>
ctiones circuli ex prima propofitione ſphæricorum Theo
<
lb
/>
doſii: </
s
>
<
s
xml:id
="
echoid-s4764
"
xml:space
="
preserve
">unus quidem circa triangulum a b c deſcriptus: </
s
>
<
s
xml:id
="
echoid-s4765
"
xml:space
="
preserve
">al-
<
lb
/>
ter uero circa d e f: </
s
>
<
s
xml:id
="
echoid-s4766
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4767
"
xml:space
="
preserve
">quoniam triangula a b c, d e f æqua-
<
lb
/>
lia ſunt, & </
s
>
<
s
xml:id
="
echoid-s4768
"
xml:space
="
preserve
">ſimilia; </
s
>
<
s
xml:id
="
echoid-s4769
"
xml:space
="
preserve
">erunt ex prima, & </
s
>
<
s
xml:id
="
echoid-s4770
"
xml:space
="
preserve
">ſecunda propoſitione
<
lb
/>
duodecimi libri elementorum, circuli quoque inter ſe ſe
<
lb
/>
æquales. </
s
>
<
s
xml:id
="
echoid-s4771
"
xml:space
="
preserve
">poſtremo a centro g ad circulum a b c perpendi
<
lb
/>
cularis ducatur g h; </
s
>
<
s
xml:id
="
echoid-s4772
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4773
"
xml:space
="
preserve
">alia perpendicularis ducatur ad cir
<
lb
/>
culum d e f, quæ ſit g _k_; </
s
>
<
s
xml:id
="
echoid-s4774
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4775
"
xml:space
="
preserve
">iungantur a h, d k. </
s
>
<
s
xml:id
="
echoid-s4776
"
xml:space
="
preserve
">perſpicuum
<
lb
/>
eſt ex corollario primæ ſphæricorum Theodoſii, punctum
<
lb
/>
h centrum eſſe circuli a b c, & </
s
>
<
s
xml:id
="
echoid-s4777
"
xml:space
="
preserve
">k centrum circuli d e f. </
s
>
<
s
xml:id
="
echoid-s4778
"
xml:space
="
preserve
">Quo
<
lb
/>
niam igitur triangulorum g a h, g d K latus a g eſt æquale la
<
lb
/>
teri g d; </
s
>
<
s
xml:id
="
echoid-s4779
"
xml:space
="
preserve
">ſunt enim à centro ſphæræ ad ſuperficiem: </
s
>
<
s
xml:id
="
echoid-s4780
"
xml:space
="
preserve
">atque
<
lb
/>
eſt a h æquale d k: </
s
>
<
s
xml:id
="
echoid-s4781
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4782
"
xml:space
="
preserve
">ex ſexta propoſitione libri primi ſphæ
<
lb
/>
ricorum Theodoſii g h ipſi g K: </
s
>
<
s
xml:id
="
echoid-s4783
"
xml:space
="
preserve
">triangulum g a h æquale
<
lb
/>
erit, & </
s
>
<
s
xml:id
="
echoid-s4784
"
xml:space
="
preserve
">ſimile g d k triangulo: </
s
>
<
s
xml:id
="
echoid-s4785
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4786
"
xml:space
="
preserve
">angulus a g h æqualis an-
<
lb
/>
gulo d g _K_. </
s
>
<
s
xml:id
="
echoid-s4787
"
xml:space
="
preserve
">ſed anguli a g h, h g d ſunt æquales duobus re-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-01
"
xlink:href
="
note-0190-01a
"
xml:space
="
preserve
">13. primi</
note
>
ctis. </
s
>
<
s
xml:id
="
echoid-s4788
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4789
"
xml:space
="
preserve
">ipſi h g d, d g k duobus rectis æquales erunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4790
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4791
"
xml:space
="
preserve
">idcirco h g, g _K_ una, atque eadem erit linea. </
s
>
<
s
xml:id
="
echoid-s4792
"
xml:space
="
preserve
">cum autem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-02
"
xlink:href
="
note-0190-02a
"
xml:space
="
preserve
">14. primi</
note
>
h ſit centrũ circuli, & </
s
>
<
s
xml:id
="
echoid-s4793
"
xml:space
="
preserve
">tri-
<
lb
/>
<
figure
xlink:label
="
fig-0190-01
"
xlink:href
="
fig-0190-01a
"
number
="
141
">
<
image
file
="
0190-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0190-01
"/>
</
figure
>
anguli a b c grauitatis cen
<
lb
/>
trũ probabitur ex iis, quæ
<
lb
/>
in prima propoſitione hu
<
lb
/>
ius tradita funt. </
s
>
<
s
xml:id
="
echoid-s4794
"
xml:space
="
preserve
">quare g h
<
lb
/>
erit pyramidis a b c g axis.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4795
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4796
"
xml:space
="
preserve
">ob eandem cauſſam g k
<
lb
/>
axis pyramidis d e f g. </
s
>
<
s
xml:id
="
echoid-s4797
"
xml:space
="
preserve
">Ita-
<
lb
/>
que centrum grauitatis py
<
lb
/>
ramidis a b c g ſit púctum
<
lb
/>
l, & </
s
>
<
s
xml:id
="
echoid-s4798
"
xml:space
="
preserve
">pyramidis d e f g ſit m. </
s
>
<
s
xml:id
="
echoid-s4799
"
xml:space
="
preserve
">
<
lb
/>
Similiter ut ſupra demon-
<
lb
/>
ſtrabimus m g, g linter ſe æquales eſſe, & </
s
>
<
s
xml:id
="
echoid-s4800
"
xml:space
="
preserve
">punctum g graui
<
lb
/>
tatis centrum magnitudinis, quæ ex utriſque pyramidibus
<
lb
/>
conſtat. </
s
>
<
s
xml:id
="
echoid-s4801
"
xml:space
="
preserve
">eodem modo demonſtrabitur, quarumcunque
<
lb
/>
duarum pyramidum, quæ opponuntur, grauitatis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>