Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < (40) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb o="40" file="0191" n="191" rhead="DE CENTRO GRAVIT. SOLID."/>
            eſſe pun ctum g. </s>
            <s xml:space="preserve">Sequitur ergo uticoſahedri centrum gra
              <lb/>
            uitatis fit idem, quodipſius ſphæræ centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="4">
            <note position="left" xlink:label="note-0190-01" xlink:href="note-0190-01a" xml:space="preserve">13. primi</note>
            <note position="left" xlink:label="note-0190-02" xlink:href="note-0190-02a" xml:space="preserve">14. primi</note>
            <figure xlink:label="fig-0190-01" xlink:href="fig-0190-01a">
              <image file="0190-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0190-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit dodecahedrum a ſin ſphæra deſignatum, ſitque ſphæ
              <lb/>
            ræ centrum m. </s>
            <s xml:space="preserve">Dico m centrum eſſe grauitatis ipſius do-
              <lb/>
            decahedri. </s>
            <s xml:space="preserve">Sit enim pentagonum a b c d e una ex duode-
              <lb/>
            cim baſibus ſolidi a f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta a m producatur ad ſphæræ
              <lb/>
            ſuperficiem. </s>
            <s xml:space="preserve">cadetin angulum ipſi a oppoſitum; </s>
            <s xml:space="preserve">quod col-
              <lb/>
            ligitur ex decima ſeptima propoſitione tertiidecimilibri
              <lb/>
            elementorum. </s>
            <s xml:space="preserve">cadat in f. </s>
            <s xml:space="preserve">at ſi ab aliis angulis b c d e per cẽ
              <lb/>
            trum itidem lineæ ducantur ad ſuperficiem ſphæræ in pun
              <lb/>
            cta g h k l; </s>
            <s xml:space="preserve">cadent hæ in alios angulos baſis, quæ ipſi a b c d
              <lb/>
            baſi opponitur. </s>
            <s xml:space="preserve">tranſeant ergo per pentagona a b c d e,
              <lb/>
            f g h K l plana ſphæram ſecantia, quæ facient ſectiones cir-
              <lb/>
            culos æquales inter ſe ſe poſtea ducantur ex centro ſphæræ
              <lb/>
            m perpen diculares ad pla-
              <lb/>
              <anchor type="figure" xlink:label="fig-0191-01a" xlink:href="fig-0191-01"/>
            na dictorum circulorũ; </s>
            <s xml:space="preserve">ad
              <lb/>
            circulum quidem a b c d e
              <lb/>
            perpendicularis m n: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad
              <lb/>
            circulum f g h K l ipſa m o,
              <lb/>
              <anchor type="note" xlink:label="note-0191-01a" xlink:href="note-0191-01"/>
            erunt puncta n o circulorũ
              <lb/>
            centra: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">lineæ m n, m o in
              <lb/>
            ter ſe æquales: </s>
            <s xml:space="preserve">quòd circu-
              <lb/>
            li æquales ſint. </s>
            <s xml:space="preserve">Eodem mo
              <lb/>
              <anchor type="note" xlink:label="note-0191-02a" xlink:href="note-0191-02"/>
            do, quo ſupra, demonſtrabi
              <lb/>
            mus lineas m n, m o in unã
              <lb/>
            atque eandem lineam con-
              <lb/>
            uenire. </s>
            <s xml:space="preserve">ergo cum puncta n o ſint centra circulorum, con-
              <lb/>
            ſtat ex prima huius & </s>
            <s xml:space="preserve">pentagonorũ grauitatis eſſe centra:
              <lb/>
            </s>
            <s xml:space="preserve">idcircoq; </s>
            <s xml:space="preserve">m n, m o pyramidum a b c d e m, ſ g h _K_ l m axes. </s>
            <s xml:space="preserve">
              <lb/>
            ponatur a b c d e m pyramidis grauitatis centrum p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">py
              <lb/>
            ramidis f g h
              <emph style="sc">K</emph>
            l m ipſum q centrum. </s>
            <s xml:space="preserve">erunt p m, m q æqua-
              <lb/>
            les, & </s>
            <s xml:space="preserve">punctum m grauitatis centrum magnitudinis, quæ
              <lb/>
            ex ipſis pyramidibus conſtat. </s>
            <s xml:space="preserve">eodẽ modo probabitur qua-
              <lb/>
            rumlibet pyramidum, quæ è regione opponuntur, centrũ</s>
          </p>
        </div>
      </text>
    </echo>