Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div272" type="section" level="1" n="92">
          <p>
            <s xml:id="echoid-s4831" xml:space="preserve">
              <pb file="0192" n="192" rhead="FED. COMMANDINI"/>
            grauitatis eſſe punctum m. </s>
            <s xml:id="echoid-s4832" xml:space="preserve">patetigitur totius dodecahe-
              <lb/>
            dri, centrum grauitatis idẽ eſſe, quod & </s>
            <s xml:id="echoid-s4833" xml:space="preserve">ſphæræ ipſum com
              <lb/>
            prehendentis centrum. </s>
            <s xml:id="echoid-s4834" xml:space="preserve">quæ quidem omnia demonſtraſſe
              <lb/>
            oportebat.</s>
            <s xml:id="echoid-s4835" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div278" type="section" level="1" n="93">
          <head xml:id="echoid-head100" xml:space="preserve">PROBLEMA VI. PROPOSITIO XX VIII.</head>
          <p>
            <s xml:id="echoid-s4836" xml:space="preserve">
              <emph style="sc">Data</emph>
            qualibet portione conoidis rectangu
              <lb/>
            li, abſciſſa plano ad axem recto, uel non recto; </s>
            <s xml:id="echoid-s4837" xml:space="preserve">fie-
              <lb/>
            ri poteſt, ut portio ſolida inſcribatur, uel circum-
              <lb/>
            ſcribatur ex cylindris, uel cylindri portionibus,
              <lb/>
            æqualem habentibus altitudinem, ita ut recta li-
              <lb/>
            nea, quæ inter centrum grauitatis portionis, & </s>
            <s xml:id="echoid-s4838" xml:space="preserve">
              <lb/>
            figuræ inſcriptæ, uel circumſcriptæ interiicitur,
              <lb/>
            ſit minor qualibet recta linea propoſita.</s>
            <s xml:id="echoid-s4839" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4840" xml:space="preserve">Sit portio conoidis rectanguli a b c, cuius axis b d, gra-
              <lb/>
            uitatisq; </s>
            <s xml:id="echoid-s4841" xml:space="preserve">centrum e: </s>
            <s xml:id="echoid-s4842" xml:space="preserve">& </s>
            <s xml:id="echoid-s4843" xml:space="preserve">fit g recta linea propoſita. </s>
            <s xml:id="echoid-s4844" xml:space="preserve">quam ue
              <lb/>
            ro proportionem habet linea b e ad lineam g, eandem ha-
              <lb/>
            beat portio conoidis ad ſolidum h: </s>
            <s xml:id="echoid-s4845" xml:space="preserve">& </s>
            <s xml:id="echoid-s4846" xml:space="preserve">circumſcribatur por
              <lb/>
            tioni figura, ſicuti dictum eſt, ita ut portiones reliquæ ſint
              <lb/>
            ſolido h minores: </s>
            <s xml:id="echoid-s4847" xml:space="preserve">cuius quidem figuræ centrum grauitatis
              <lb/>
            ſit punctum
              <emph style="sc">K</emph>
            . </s>
            <s xml:id="echoid-s4848" xml:space="preserve">Dico lineã k e minorem eſſe linea g propo-
              <lb/>
            ſita. </s>
            <s xml:id="echoid-s4849" xml:space="preserve">niſi enim ſit minor, uel æqualis, uel maior erit. </s>
            <s xml:id="echoid-s4850" xml:space="preserve">& </s>
            <s xml:id="echoid-s4851" xml:space="preserve">quo-
              <lb/>
            niam figura circumſcripta ad reliquas portiones maiorem
              <lb/>
              <note position="left" xlink:label="note-0192-01" xlink:href="note-0192-01a" xml:space="preserve">8. quĭnti.</note>
            proportionem habet, quàm portio conoidis ad ſolidum h;
              <lb/>
            </s>
            <s xml:id="echoid-s4852" xml:space="preserve">hoc eſt maiorem, quàm b c ad g: </s>
            <s xml:id="echoid-s4853" xml:space="preserve">& </s>
            <s xml:id="echoid-s4854" xml:space="preserve">b e ad g non minorem
              <lb/>
            habet proportionem, quàm ad _k_ e, propterea quod k e non
              <lb/>
            ponitur minor ipſa g: </s>
            <s xml:id="echoid-s4855" xml:space="preserve">habebit figura circumſcripta ad por
              <lb/>
            tiones reliquas maiorem proportionem quàm b e ad e k: </s>
            <s xml:id="echoid-s4856" xml:space="preserve">
              <lb/>
              <note position="left" xlink:label="note-0192-02" xlink:href="note-0192-02a" xml:space="preserve">29. quĭnti
                <lb/>
              ex tradi-
                <lb/>
              tione Cã-
                <lb/>
              ſàni.</note>
            & </s>
            <s xml:id="echoid-s4857" xml:space="preserve">diuidendo portio conoidis ad reliquas portiones habe-
              <lb/>
            bit maiorem, quàm b
              <emph style="sc">K</emph>
            ad K e. </s>
            <s xml:id="echoid-s4858" xml:space="preserve">quare ſi fiat ut portio </s>
          </p>
        </div>
      </text>
    </echo>