Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < (44) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="94">
          <p>
            <s xml:space="preserve">
              <pb o="44" file="0199" n="199" rhead="DE CENTRO GRAVIT. SOLID."/>
            relinquetur p e ipſi n χ æqualis. </s>
            <s xml:space="preserve">cum autem b e ſit dupla
              <lb/>
            e d, & </s>
            <s xml:space="preserve">o p dupla p n, hoc eſt ipſius e χ, & </s>
            <s xml:space="preserve">reliquum, uideli-
              <lb/>
            cet b o unà cum p e ipſius reliqui χ d duplnm erit. </s>
            <s xml:space="preserve">eſtque
              <lb/>
              <anchor type="note" xlink:label="note-0199-01a" xlink:href="note-0199-01"/>
            b o dupla ζ d. </s>
            <s xml:space="preserve">ergo p e, hoc eſt n χ ipſius χ ρ dupla. </s>
            <s xml:space="preserve">ſed d n
              <lb/>
            dupla eſt n ζ. </s>
            <s xml:space="preserve">reliqua igitur d χ dupla reliquæ χ n. </s>
            <s xml:space="preserve">ſunt au-
              <lb/>
            tem d χ, p n inter ſe æquales: </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">æquales χ n, p e. </s>
            <s xml:space="preserve">qua-
              <lb/>
            re conſtat n p ipſius p e duplam eſſe. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco p e ipſi e n
              <lb/>
            æqualem. </s>
            <s xml:space="preserve">Rurſus cum ſit μ ν dupla o ν, & </s>
            <s xml:space="preserve">μ σ dupla σ ν; </s>
            <s xml:space="preserve">erit
              <lb/>
            etiam reliqua ν σ o dupla. </s>
            <s xml:space="preserve">Eadem quoque ratione
              <lb/>
            cõcludetur π υ dupla υ m. </s>
            <s xml:space="preserve">ergo ut ν σ ad σ O, ita π υ ad υ m:
              <lb/>
            </s>
            <s xml:space="preserve">componendoq;</s>
            <s xml:space="preserve">, & </s>
            <s xml:space="preserve">permutando, ut υ o ad π m, ita o σ ad
              <lb/>
            m υ & </s>
            <s xml:space="preserve">ſunt æquales ν o, π m. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">o σ, m υ æquales. </s>
            <s xml:space="preserve">præ
              <lb/>
            terea σ π dupla eſt π τ, & </s>
            <s xml:space="preserve">ν π ipſius π m. </s>
            <s xml:space="preserve">reliqua igitur σ ν re
              <lb/>
            liquæ m τ dupla. </s>
            <s xml:space="preserve">atque erat ν σ dupla σ o. </s>
            <s xml:space="preserve">ergo m τ, σ o æ-
              <lb/>
            quales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita æquales m υ, n φ. </s>
            <s xml:space="preserve">at o σ, eſt æqualis
              <lb/>
            m υ. </s>
            <s xml:space="preserve">Sequitur igitur, ut omnes o σ, m τ, m υ, n φ in-
              <lb/>
            ter ſe ſint æquales. </s>
            <s xml:space="preserve">Sed ut ρ π ad π τ, hoc eſt ut 3 ad 2, ita n d
              <lb/>
            ad d χ: </s>
            <s xml:space="preserve">permutãdoq; </s>
            <s xml:space="preserve">ut ρ π ad n d, ita π τ ad d χ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſũt æqua
              <lb/>
            les ζ π, n d. </s>
            <s xml:space="preserve">ergo d χ, hoc eſt n p, & </s>
            <s xml:space="preserve">π τ æquales. </s>
            <s xml:space="preserve">Sed etiam æ-
              <lb/>
            quales n π, π m. </s>
            <s xml:space="preserve">reliqua igitur π p reliquæ m τ, hoc eſt ipſi
              <lb/>
            n φ æqualis erit. </s>
            <s xml:space="preserve">quare dempta p π ex p e, & </s>
            <s xml:space="preserve">φ n dempta ex
              <lb/>
            n e, relinquitur p e æqualis e φ. </s>
            <s xml:space="preserve">Itaque π, ρ centra figurarũ
              <lb/>
            ſecundo loco deſcriptarum a primis centris p n æquali in-
              <lb/>
            teruallo recedunt. </s>
            <s xml:space="preserve">quòd ſi rurſus aliæ figuræ deſcribantur,
              <lb/>
            eodem modo demonſtrabimus earum centra æqualiter ab
              <lb/>
            his recedere, & </s>
            <s xml:space="preserve">ad portionis conoidis centrum propius ad
              <lb/>
            moueri. </s>
            <s xml:space="preserve">Ex quibus conſtat lineam π φ à centro grauitatis
              <lb/>
            portionis diuidi in partes æquales. </s>
            <s xml:space="preserve">Si enim fieri poteſt, non
              <lb/>
            ſit centrum in puncto e, quod eſt lineæ π φ medium: </s>
            <s xml:space="preserve">ſed in
              <lb/>
            ψ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ipſi π ψ æqualis fiat φ ω. </s>
            <s xml:space="preserve">Cum igitur in portione ſolida
              <lb/>
            quædam figura inſcribi posſit, ita ut linea, quæ inter cen-
              <lb/>
            trum grauitatis portionis, & </s>
            <s xml:space="preserve">inſcriptæ figuræ interiicitur,
              <lb/>
            qualibet linea propoſita ſit minor, quod proxime demon-
              <lb/>
            ſtrauimus: </s>
            <s xml:space="preserve">perueniet tandem φ centrum inſcriptæ figuræ</s>
          </p>
        </div>
      </text>
    </echo>