Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(32)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div137
"
type
="
section
"
level
="
1
"
n
="
43
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1859
"
xml:space
="
preserve
">
<
pb
o
="
32
"
file
="
0075
"
n
="
75
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
ad ſectionem e f g ex parte e linea l m, eidem a c baſi æquidi-
<
lb
/>
stans. </
s
>
<
s
xml:id
="
echoid-s1860
"
xml:space
="
preserve
">Sit autem ſectionis a b c, linea b n iuxta quam poſſunt, quæ
<
lb
/>
à ſectione ducuntur: </
s
>
<
s
xml:id
="
echoid-s1861
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1862
"
xml:space
="
preserve
">ſectionis e f c ſit ipſa f o. </
s
>
<
s
xml:id
="
echoid-s1863
"
xml:space
="
preserve
">quoniam igi-
<
lb
/>
tur triangula c d b, c f g ſimilia ſunt, erit ut b c ad c f, ita d c
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-01
"
xlink:href
="
note-0075-01a
"
xml:space
="
preserve
">4. ſexti.</
note
>
ad c g; </
s
>
<
s
xml:id
="
echoid-s1864
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1865
"
xml:space
="
preserve
">b d ad f g. </
s
>
<
s
xml:id
="
echoid-s1866
"
xml:space
="
preserve
">rurſus quoniam triangula c k b, c l f etiã
<
lb
/>
inter ſe ſunt ſimilia, ut b c ad c f, boc eſt ut b d ad f g, ita erit k c
<
lb
/>
ad c l; </
s
>
<
s
xml:id
="
echoid-s1867
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1868
"
xml:space
="
preserve
">b K ad f l. </
s
>
<
s
xml:id
="
echoid-s1869
"
xml:space
="
preserve
">quare K c ad c l, & </
s
>
<
s
xml:id
="
echoid-s1870
"
xml:space
="
preserve
">b k ad f l ſunt ut d c
<
lb
/>
ad c g: </
s
>
<
s
xml:id
="
echoid-s1871
"
xml:space
="
preserve
">hoc eſt ut earum duplæ a c ad c e. </
s
>
<
s
xml:id
="
echoid-s1872
"
xml:space
="
preserve
">ſed ut b d ad f g, ita d c
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-02
"
xlink:href
="
note-0075-02a
"
xml:space
="
preserve
">15. quin-
<
lb
/>
ti.</
note
>
ad c g; </
s
>
<
s
xml:id
="
echoid-s1873
"
xml:space
="
preserve
">hoc ẽ a d ad e g: </
s
>
<
s
xml:id
="
echoid-s1874
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1875
"
xml:space
="
preserve
">permutãdo ut b d ad a d, ita f g ad e g.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1876
"
xml:space
="
preserve
">quadratum autem a d æquale eſt rectangulo d b n ex undecima pri
<
lb
/>
mi conicorum. </
s
>
<
s
xml:id
="
echoid-s1877
"
xml:space
="
preserve
">ergo tres lineæ b d, a d, b n inter ſe ſunt proportio
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-03
"
xlink:href
="
note-0075-03a
"
xml:space
="
preserve
">17. ſexti.</
note
>
nales. </
s
>
<
s
xml:id
="
echoid-s1878
"
xml:space
="
preserve
">eadem quoque ratione cum quadratum e g æquale ſit rectan
<
lb
/>
gulo g f o, tres aliæ lineæ f g, e g, f o, deinceps proportionales
<
lb
/>
erũt. </
s
>
<
s
xml:id
="
echoid-s1879
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1880
"
xml:space
="
preserve
">ut b d ad, a d, ita f g ad e g. </
s
>
<
s
xml:id
="
echoid-s1881
"
xml:space
="
preserve
">quare ut a d ad b n, ita e g
<
lb
/>
ad f o. </
s
>
<
s
xml:id
="
echoid-s1882
"
xml:space
="
preserve
">ex æquali igitur, ut d b ad b n, ita g f ad f o: </
s
>
<
s
xml:id
="
echoid-s1883
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1884
"
xml:space
="
preserve
">permu-
<
lb
/>
tando ut d b ad g f, ita b n ad f o. </
s
>
<
s
xml:id
="
echoid-s1885
"
xml:space
="
preserve
">ut autem d b ad g f, ita b k
<
lb
/>
ad f l. </
s
>
<
s
xml:id
="
echoid-s1886
"
xml:space
="
preserve
">ergo b k ad f l, ut b n ad f o: </
s
>
<
s
xml:id
="
echoid-s1887
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1888
"
xml:space
="
preserve
">permutando, ut b k ad
<
lb
/>
bn, ita f l ad f o. </
s
>
<
s
xml:id
="
echoid-s1889
"
xml:space
="
preserve
">Rurſus quoniá quadratú h K æquale eſt rectan
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-04
"
xlink:href
="
note-0075-04a
"
xml:space
="
preserve
">11. primi
<
lb
/>
conicorũ</
note
>
gulo k b n: </
s
>
<
s
xml:id
="
echoid-s1890
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1891
"
xml:space
="
preserve
">quadratum m l rectangulo l f o æquale: </
s
>
<
s
xml:id
="
echoid-s1892
"
xml:space
="
preserve
">erunt tres
<
lb
/>
lineæ b k, k h, b n proportionales: </
s
>
<
s
xml:id
="
echoid-s1893
"
xml:space
="
preserve
">itémq; </
s
>
<
s
xml:id
="
echoid-s1894
"
xml:space
="
preserve
">proportionales inter ſe
<
lb
/>
f l, l m, f o. </
s
>
<
s
xml:id
="
echoid-s1895
"
xml:space
="
preserve
">quare ut linea b K ad lineam b n, ita quadratum b K
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-05
"
xlink:href
="
note-0075-05a
"
xml:space
="
preserve
">cor. 20. ſe
<
lb
/>
xti.</
note
>
ad quadratum h k: </
s
>
<
s
xml:id
="
echoid-s1896
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1897
"
xml:space
="
preserve
">ut linea f l ad ipſam f o, ita quadratú f l
<
lb
/>
ad quadratum l m. </
s
>
<
s
xml:id
="
echoid-s1898
"
xml:space
="
preserve
">Itaque quoniam, ut b K ad b n, ita eſt f l ad
<
lb
/>
f o; </
s
>
<
s
xml:id
="
echoid-s1899
"
xml:space
="
preserve
">erit ut quadratum b K ad quadratum k h, ita quadratum f l
<
lb
/>
ad l m quadratum. </
s
>
<
s
xml:id
="
echoid-s1900
"
xml:space
="
preserve
">ergo ut linea b k, ad lineam K h, ita linea f l
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-06
"
xlink:href
="
note-0075-06a
"
xml:space
="
preserve
">22. ſexti</
note
>
ad ipsã lm: </
s
>
<
s
xml:id
="
echoid-s1901
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1902
"
xml:space
="
preserve
">permutãdo ut b k ad f l, ita k h ad lm. </
s
>
<
s
xml:id
="
echoid-s1903
"
xml:space
="
preserve
">ſed b k ad
<
lb
/>
f l erat ut k c ad c l. </
s
>
<
s
xml:id
="
echoid-s1904
"
xml:space
="
preserve
">ergo k h ad lm, ut K c ad c l. </
s
>
<
s
xml:id
="
echoid-s1905
"
xml:space
="
preserve
">quare ex eo
<
lb
/>
dem lemmate patet lineam h c, & </
s
>
<
s
xml:id
="
echoid-s1906
"
xml:space
="
preserve
">per m punctum tranſire. </
s
>
<
s
xml:id
="
echoid-s1907
"
xml:space
="
preserve
">ut igi-
<
lb
/>
tur K c ad c l: </
s
>
<
s
xml:id
="
echoid-s1908
"
xml:space
="
preserve
">hoc eſt ut a c ad c e, ita h c ad c m; </
s
>
<
s
xml:id
="
echoid-s1909
"
xml:space
="
preserve
">hoc eſt ad eam
<
lb
/>
ipſius partem, quæ inter c, & </
s
>
<
s
xml:id
="
echoid-s1910
"
xml:space
="
preserve
">e g c ſectionem interyeitur. </
s
>
<
s
xml:id
="
echoid-s1911
"
xml:space
="
preserve
">ſimiliter
<
lb
/>
demonſtrabimus idem contingere in alijs lineis, quæ à puncto c ad
<
lb
/>
a b c ſectionem perducuntur. </
s
>
<
s
xml:id
="
echoid-s1912
"
xml:space
="
preserve
">At uero b c ad e f eandern propor-
<
lb
/>
tionem habere, liquido apparet; </
s
>
<
s
xml:id
="
echoid-s1913
"
xml:space
="
preserve
">nam b c ad c f, eſt ut d c ad c g;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1914
"
xml:space
="
preserve
">uidelicet ut earum duplæ, a c ad c e.</
s
>
<
s
xml:id
="
echoid-s1915
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>