Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb file="0120" n="120" rhead="FED. COMMANDINI"/>
            triangulum m k φ triangulo n k φ. </s>
            <s xml:space="preserve">ergo anguli l z k, o z k,
              <lb/>
            m φ k, n φ k æquales ſunt, ac recti. </s>
            <s xml:space="preserve">quòd cum etiam recti
              <lb/>
            ſint, qui ad k; </s>
            <s xml:space="preserve">æquidiſtabunt lineæ l o, m n axi b d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita.
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0120-01a" xlink:href="note-0120-01"/>
            demonſtrabuntur l m, o n ipſi a c æquidiſtare. </s>
            <s xml:space="preserve">Rurſus ſi
              <lb/>
            iungantur a l, l b, b m, m c, c n, n d, d o, o a: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam di
              <lb/>
            uidantur: </s>
            <s xml:space="preserve">à centro autem k ad diuiſiones ductæ lineæ pro-
              <lb/>
            trahantur uſque ad ſectionem in puncta p q r s t u x y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">po
              <lb/>
            ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur. </s>
            <s xml:space="preserve">Simili-
              <lb/>
            ter oſtendemus lineas
              <lb/>
              <anchor type="figure" xlink:label="fig-0120-01a" xlink:href="fig-0120-01"/>
            p y, q x, r u, s t axi b d æ-
              <lb/>
            quidiſtantes eſſe: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">q r,
              <lb/>
            p s, y t, x u æquidiſtan-
              <lb/>
            tesipſi a c. </s>
            <s xml:space="preserve">Itaque dico
              <lb/>
            harum figurarum in el-
              <lb/>
            lipſi deſcriptarum cen-
              <lb/>
            trum grauitatis eſſe pũ-
              <lb/>
            ctum k, idem quod & </s>
            <s xml:space="preserve">el
              <lb/>
            lipſis centrum. </s>
            <s xml:space="preserve">quadri-
              <lb/>
            lateri enim a b c d cen-
              <lb/>
            trum eſt k, ex decima e-
              <lb/>
            iuſdem libri Archime-
              <lb/>
            dis, quippe cũ in eo om
              <lb/>
            nes diametri cõueniãt.
              <lb/>
            </s>
            <s xml:space="preserve">Sed in figura alb m c n
              <lb/>
              <anchor type="note" xlink:label="note-0120-02a" xlink:href="note-0120-02"/>
            d o, quoniam trianguli
              <lb/>
            alb centrum grauitatis
              <lb/>
              <anchor type="note" xlink:label="note-0120-03a" xlink:href="note-0120-03"/>
            eſt in linea l e: </s>
            <s xml:space="preserve">trapezijq́; </s>
            <s xml:space="preserve">a b m o centrum in linea e k: </s>
            <s xml:space="preserve">trape
              <lb/>
            zij o m c d in k g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli c n d in ipſa g n: </s>
            <s xml:space="preserve">erit magnitu
              <lb/>
            dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
              <lb/>
            trum grauitatis in linea l n: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">o b eandem cauſſam in linea
              <lb/>
            o m. </s>
            <s xml:space="preserve">eſt enim trianguli a o d centrum in linea o h: </s>
            <s xml:space="preserve">trapezij
              <lb/>
            a l n d in h k: </s>
            <s xml:space="preserve">trapezij l b c n in k f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli b m c in fm.
              <lb/>
            </s>
            <s xml:space="preserve">cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
              <lb/>
            nea l n, & </s>
            <s xml:space="preserve">in linea o m; </s>
            <s xml:space="preserve">erit centrum ipſius punctum k, in</s>
          </p>
        </div>
      </text>
    </echo>