Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (5) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb o="5" file="0121" n="121" rhead="DE CENTRO GRAVIT. SOLID."/>
            quo ſcilicet ln, om conueniunt. </s>
            <s xml:space="preserve">Poſtremo in figura
              <lb/>
            a p l q b r m s c t n u d x o y centrum grauitatis trian
              <lb/>
            guli pay, & </s>
            <s xml:space="preserve">trapezii ploy eſtin linea a z: </s>
            <s xml:space="preserve">trapeziorum
              <lb/>
            uero lqxo, q b d x centrum eſtin linea z k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trapeziorũ
              <lb/>
            b r u d, r m n u in k φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">denique trapezii m s t n; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu
              <lb/>
            li s c t in φ c. </s>
            <s xml:space="preserve">quare magnitudinis ex his compoſitæ centrū
              <lb/>
            in linea a c conſiſtit. </s>
            <s xml:space="preserve">Rurſus trianguli q b r, & </s>
            <s xml:space="preserve">trapezii q l
              <lb/>
            m r centrum eſt in linea b χ: </s>
            <s xml:space="preserve">trapeziorum l p s m, p a c s,
              <lb/>
            a y t c, y o n t in linea χ φ: </s>
            <s xml:space="preserve">trapeziiq; </s>
            <s xml:space="preserve">o x u n, & </s>
            <s xml:space="preserve">trianguli
              <lb/>
            x d u centrum in ψ d. </s>
            <s xml:space="preserve">totius ergo magnitudinis centrum
              <lb/>
            eſtin linea b d. </s>
            <s xml:space="preserve">ex quo ſequitur, centrum grauitatis figuræ
              <lb/>
            a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
              <lb/>
            b d commune, quæ omnia demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0119-01" xlink:href="note-0119-01a" xml:space="preserve">8. primi</note>
            <figure xlink:label="fig-0119-01" xlink:href="fig-0119-01a">
              <image file="0119-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01"/>
            </figure>
            <note position="right" xlink:label="note-0119-02" xlink:href="note-0119-02a" xml:space="preserve">33. primit</note>
            <note position="left" xlink:label="note-0120-01" xlink:href="note-0120-01a" xml:space="preserve">28. primi.</note>
            <figure xlink:label="fig-0120-01" xlink:href="fig-0120-01a">
              <image file="0120-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01"/>
            </figure>
            <note position="left" xlink:label="note-0120-02" xlink:href="note-0120-02a" xml:space="preserve">13. Archi
              <lb/>
            medis.</note>
            <note position="left" xlink:label="note-0120-03" xlink:href="note-0120-03a" xml:space="preserve">Vltima.</note>
          </div>
        </div>
        <div type="section" level="1" n="66">
          <head xml:space="preserve">THE OREMA III. PROPOSITIO III.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portio-
              <lb/>
              <anchor type="figure" xlink:label="fig-0121-01a" xlink:href="fig-0121-01"/>
            nis circuli, & </s>
            <s xml:space="preserve">ellipſis,
              <lb/>
            quæ dimidia non ſit
              <lb/>
            maior, centrum graui
              <lb/>
            tatis in portionis dia-
              <lb/>
            metro conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0121-01" xlink:href="fig-0121-01a">
              <image file="0121-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0121-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">HOC eodem prorſus
              <lb/>
            modo demonſtrabitur,
              <lb/>
            quo in libro de centro gra
              <lb/>
            uitatis planorum ab Ar-
              <lb/>
            chimede demonſtratũ eſt,
              <lb/>
            in portione cõtenta recta
              <lb/>
            linea, & </s>
            <s xml:space="preserve">rectanguli coni ſe
              <lb/>
            ctione grauitatis cẽtrum
              <lb/>
            eſſe in diametro portio-
              <lb/>
            nis. </s>
            <s xml:space="preserve">Etita demonſtrari po
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0121-02a" xlink:href="hd-0121-02"/>
            </s>
          </p>
        </div>
      </text>
    </echo>