Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (15) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="15" file="0143" n="143" rhead="DE CENTRO GRAVIT. SOLID."/>
              <anchor type="figure" xlink:label="fig-0143-01a" xlink:href="fig-0143-01"/>
            ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
              <lb/>
            dri portio ad c_y_lindri portionem: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut p_y_ramis ad p_y_ra-
              <lb/>
            midem, ita priſma ad priſma, cum eadem ſit baſis, & </s>
            <s xml:space="preserve">æqua
              <lb/>
            lis altitudo; </s>
            <s xml:space="preserve">erit c_y_lindrus uel c_y_lindri portio x priſma-
              <lb/>
            ti _y_ æqualis. </s>
            <s xml:space="preserve">eftq; </s>
            <s xml:space="preserve">ut ſpacium g h ad ſpacium x, ita c_y_lin-
              <lb/>
            drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
              <lb/>
            tionem x. </s>
            <s xml:space="preserve">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
              <lb/>
            c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
              <lb/>
              <anchor type="note" xlink:label="note-0143-01a" xlink:href="note-0143-01"/>
            ſpacio g h deſcripta, eandem proportionem habere, quam
              <lb/>
            ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
              <lb/>
            </s>
            <s xml:space="preserve">quod demonſtrandum fuerat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="7">
            <note position="right" xlink:label="note-0141-01" xlink:href="note-0141-01a" xml:space="preserve">6. duode-
              <lb/>
            cimi.</note>
            <figure xlink:label="fig-0142-01" xlink:href="fig-0142-01a">
              <image file="0142-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0142-01"/>
            </figure>
            <figure xlink:label="fig-0143-01" xlink:href="fig-0143-01a">
              <image file="0143-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01"/>
            </figure>
            <note position="right" xlink:label="note-0143-01" xlink:href="note-0143-01a" xml:space="preserve">7. quinti</note>
          </div>
        </div>
        <div type="section" level="1" n="74">
          <head xml:space="preserve">THE OREMA IX. PROPOSITIO IX.</head>
          <p>
            <s xml:space="preserve">Si pyramis ſecetur plano baſi æquidiſtante; </s>
            <s xml:space="preserve">ſe-
              <lb/>
            ctio erit figura ſimilis ei, quæ eſt baſis, centrum
              <lb/>
            grauitatis in axe habens.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>