Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (43) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="94">
          <p>
            <s xml:space="preserve">
              <pb o="43" file="0197" n="197" rhead="DE CENTRO GRAVIT. SOLID."/>
            b m. </s>
            <s xml:space="preserve">ergo circulus a c circuli _k_ g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco cylindrus
              <lb/>
            a h cylindri _k_ l duplus erit. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">linea o p dupla
              <lb/>
            ipſius p n. </s>
            <s xml:space="preserve">Deinde inſcripta & </s>
            <s xml:space="preserve">circumſcripta portioni
              <lb/>
            alia figura, ita ut inſcripta conſtituatur ex tribus cylin-
              <lb/>
            dris q r, s g, tu: </s>
            <s xml:space="preserve">circumſcripta uero ex quatuor a x, y z,
              <lb/>
            _K_ ν, θ λ: </s>
            <s xml:space="preserve">diuidantur b o, o m, m n, n d bifariam in punctis
              <lb/>
            μ ν π ρ. </s>
            <s xml:space="preserve">Itaque cylindri θ λ centrum grauitætis eſt punctum
              <lb/>
            μ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cylindri
              <emph style="sc">K</emph>
            ν centrum ν. </s>
            <s xml:space="preserve">ergo ſi linea μ ν diuidatur in σ,
              <lb/>
            ita ut μ σ ad σ ν proportionẽ eã habeat, quam cylindrus K ν
              <lb/>
            ad cylindrum θ λ, uidelicet quam quadratum
              <emph style="sc">K</emph>
            m ad qua-
              <lb/>
            dratum θ o, hoc eſt, quam linea m b ad b o: </s>
            <s xml:space="preserve">erit σ centrum
              <lb/>
              <anchor type="note" xlink:label="note-0197-01a" xlink:href="note-0197-01"/>
            magnitudinis compoſitæ ex cylindris
              <emph style="sc">K</emph>
            ν, θ λ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cum linea
              <lb/>
            m b ſit dupla b o, erit & </s>
            <s xml:space="preserve">μ σ ipſius σ ν dupla. </s>
            <s xml:space="preserve">præterea quo-
              <lb/>
            niam cylindri y z centrum grauitatis eſt π, linea σ π ita diui
              <lb/>
            ſa in τ, ut σ τ ad τ π eam habeat proportionem, quam cylin
              <lb/>
            drus y z ad duos cylindros K ν, θ λ: </s>
            <s xml:space="preserve">erit τ centrum magnitu
              <lb/>
            dinis, quæ ex dictis tribus cylindris conſtat. </s>
            <s xml:space="preserve">cylindrus au-
              <lb/>
            tẽ y z ad cylindrum θ λ eſt, ut linea n b ad b o, hoc eſt ut 3
              <lb/>
            ad 1: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad cylindrum k ν, ut n b ad b m, uidelicet ut 3 ad 2.
              <lb/>
            </s>
            <s xml:space="preserve">quare y z cylĩdrus duobus cylindris k ν, θ λ æqualis erit. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            propterea linea σ τ æqualis ipſi τ π. </s>
            <s xml:space="preserve">denique cylindri a x
              <lb/>
            centrum grauitatis eſt punctum ρ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cum τ ζ diuiſa fuerit
              <lb/>
            in eã proportionem, quam habet cylindrus a x ad tres cy-
              <lb/>
            lindros y z, _k_ ν, θ λ: </s>
            <s xml:space="preserve">erit in eo puncto centrum grauitatis
              <lb/>
            totius figuræ circũſcriptæ. </s>
            <s xml:space="preserve">Sed cylindrus a x ad ipſum y z
              <lb/>
            eſt ut linea d b ad b n: </s>
            <s xml:space="preserve">hoc eſt ut 4 ad 3: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">duo cylindri _k_ ν
              <lb/>
            θ λ cylindro y z ſunt æquales. </s>
            <s xml:space="preserve">cylindrns igitur a x ad tres
              <lb/>
            iam dictos cylindros eſt ut 2 ad 3. </s>
            <s xml:space="preserve">Sed quoniã μ σ eſt dua-
              <lb/>
            rum partium, & </s>
            <s xml:space="preserve">σ ν unius, qualium μ π eſt ſex; </s>
            <s xml:space="preserve">erit σ π par-
              <lb/>
            tium quatuor: </s>
            <s xml:space="preserve">proptereaq; </s>
            <s xml:space="preserve">τ π duarum, & </s>
            <s xml:space="preserve">ν π, hoc eſt π ρ
              <lb/>
            trium. </s>
            <s xml:space="preserve">quare ſequitur ut punctum π totius figuræ circum
              <lb/>
            ſcriptæ ſit centrum. </s>
            <s xml:space="preserve">Itaque fiat ν υ ad υ π, ut μ σ ad σ ν. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">υ ρ
              <lb/>
            bifariam diuidatur in φ. </s>
            <s xml:space="preserve">Similiter ut in circumſcripta figu
              <lb/>
            ra oſtendetur centrum magnitudinis compoſitæ ex cylin-</s>
          </p>
        </div>
      </text>
    </echo>