Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (47) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="96">
          <p>
            <s xml:space="preserve">
              <pb o="47" file="0205" n="205" rhead="DE CENTRO GRAVIT. SOLID."/>
            eani proportionem habeat, quam a b c d fruſtum ad por-
              <lb/>
            tionem a g d; </s>
            <s xml:space="preserve">erit punctum l eius fruſti grauitatis cẽtrum:
              <lb/>
            </s>
            <s xml:space="preserve">habebitq; </s>
            <s xml:space="preserve">componendo K l ad 1 h proportionem eandem,
              <lb/>
            quam portio conoidis b gc ad a g d portionem. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">quo
              <lb/>
              <anchor type="note" xlink:label="note-0205-01a" xlink:href="note-0205-01"/>
            niam quadratum b f ad quadratum a e, hoc eſt quadratum
              <lb/>
            b c ad quadratum a d eſt, ut linea f g ad g e: </s>
            <s xml:space="preserve">erunt duæ ter-
              <lb/>
            tiæ quadrati b c ad duas tertias quadrati a d, ut h g ad g _k_:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſi à duabus tertiis quadrati b c demptæ fuerint duæ ter-
              <lb/>
            tiæ quadrati a d: </s>
            <s xml:space="preserve">erit diuidẽdo id, quod relinquitur ad duas
              <lb/>
            tertias quadrati a d, ut h k ad k g. </s>
            <s xml:space="preserve">Rurſus duæ tertiæ quadra
              <lb/>
            ti a d ad duas tertias quadrati b c ſunt, ut _k_ g ad g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">duæ
              <lb/>
            tertiæ quadrati b c ad tertiã partẽ ipſius, ut g h ad h f. </s>
            <s xml:space="preserve">ergo
              <lb/>
            ex æ quali id, quod relinquitur ex duabus tertiis quadrati
              <lb/>
            b c, demptis ab ipſis quadrati a d duabus tertiis, ad tertiã
              <lb/>
            partem quadrati b c, ut _k_ h ad h f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad portionem eiuſdẽ
              <lb/>
            tertiæ partis, ad quam unà cum ipſa portione, duplam pro
              <lb/>
            portionem habeat eius, quæ eſt quadrati b c ad quadratũ
              <lb/>
            a d, ut K 1 ad 1 h. </s>
            <s xml:space="preserve">habet enim _K_l ad 1 h ean dem proportio-
              <lb/>
            nem, quam conoidis portio b g c ad portionem a g d: </s>
            <s xml:space="preserve">por-
              <lb/>
            tio autem b g c ad portionem a g d duplam proportionem
              <lb/>
            habet eius, quæ eſt baſis b c ad baſim a d: </s>
            <s xml:space="preserve">hoc eſt quadrati
              <lb/>
            b c ad quadratum a d; </s>
            <s xml:space="preserve">ut proxime demonſtratum eſt. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0205-02a" xlink:href="note-0205-02"/>
            dempto a d quadrato à duabus tertiis quadrati b c, erit id,
              <lb/>
            quod relin quitur unà cum dicta portione tertiæ partis ad
              <lb/>
            reliquam eiuſdem portionem, ut el ad 1 f. </s>
            <s xml:space="preserve">Cum igitur cen-
              <lb/>
            trum grauitatis fruſti a b c d ſit l, à quo axis e f in eam, quã
              <lb/>
            diximus, proportionem diuidatur; </s>
            <s xml:space="preserve">conſtat uerũ eſſe illud,
              <lb/>
            quod demonſtrandum propoſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0204-01" xlink:href="fig-0204-01a">
              <image file="0204-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0204-01"/>
            </figure>
            <note position="right" xlink:label="note-0205-01" xlink:href="note-0205-01a" xml:space="preserve">20. I. coni
              <lb/>
            corum.</note>
            <note position="right" xlink:label="note-0205-02" xlink:href="note-0205-02a" xml:space="preserve">30. huius</note>
          </div>
        </div>
        <div type="section" level="1" n="97">
          <head xml:space="preserve">FINIS LIBRI DE CENTRO
            <lb/>
          GRAVITATIS SOLIDORVM.</head>
          <p>
            <s xml:space="preserve">Impreſſ. </s>
            <s xml:space="preserve">Bononiæ cum licentia Superiorum.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>