Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0134" n="134" rhead="FED. COMMANDINI"/>
            t u, x y ipſi g h æquidiſtare. </s>
            <s xml:space="preserve">Et quoniam triangula, quæ
              <lb/>
            fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </s>
            <s xml:space="preserve">ſimilia
              <lb/>
            triangulo K m h: </s>
            <s xml:space="preserve">habebit triangulum K m h ad triangulũ
              <lb/>
              <anchor type="note" xlink:label="note-0134-01a" xlink:href="note-0134-01"/>
            K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
              <lb/>
            </s>
            <s xml:space="preserve">ſed _K_ h poſita eſt quadrupla ipſius k y. </s>
            <s xml:space="preserve">ergo triangulum
              <lb/>
            κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
              <lb/>
            quam ſexdecim ad unũ & </s>
            <s xml:space="preserve">ad quatuor triangula k δ y, y u,
              <lb/>
            u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
              <lb/>
            eſt quam h K ad κ y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimiliter eandem habere demonſtra
              <lb/>
            bitur trian-
              <lb/>
              <anchor type="figure" xlink:label="fig-0134-01a" xlink:href="fig-0134-01"/>
            gulum κ m g
              <lb/>
            ad quatuor
              <lb/>
            triãgula K δ
              <lb/>
            x, x γ t, t β r,
              <lb/>
            r z g. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0134-02a" xlink:href="note-0134-02"/>
            totum trian
              <lb/>
            gulum K g h
              <lb/>
            ad omnia tri
              <lb/>
            angula g z r,
              <lb/>
            r β t, t γ x, x δ
              <lb/>
            _K_, K δ y, y u,
              <lb/>
            u s, s α h ita
              <lb/>
            erit, ut h κ a d
              <lb/>
            k y, hoc eſt
              <lb/>
            ut h m ad m
              <lb/>
            q. </s>
            <s xml:space="preserve">Si igitur in
              <lb/>
            triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
              <lb/>
            ſcripta eſt in g h K triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas ſibi reſp onden-
              <lb/>
            tes plana ducantur: </s>
            <s xml:space="preserve">totum priſma a f diuiſum eritin tria
              <lb/>
            ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
              <lb/>
            les & </s>
            <s xml:space="preserve">ſimiles ipſis parallelogrammis y γ, u β, s z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in octo
              <lb/>
            priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </s>
            <s xml:space="preserve">quorum
              <lb/>
            item baſes æquales, & </s>
            <s xml:space="preserve">ſimiles ſunt dictis triangulis; </s>
            <s xml:space="preserve">altitu-
              <lb/>
            do autem in omnibus, totius priſmatis altitudini æ qualis.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>