Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb file="0168" n="168" rhead="FED. COMMANDINI"/>
            ſunt uertice, eandem proportionem habent, quam ipſarũ
              <lb/>
            baſes. </s>
            <s xml:space="preserve">eadem ratione pyramis a c l k pyramidi b c l k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">py
              <lb/>
            ramis a d l k ipſi b d l k pyramidi æqualis erit. </s>
            <s xml:space="preserve">Itaque ſi a py
              <lb/>
            ramide a c l d auferantur pyramides a clk, a d l k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à pyra
              <lb/>
            mide b c l d auferãtur pyramides b c l k, d b l K: </s>
            <s xml:space="preserve">quæ relin-
              <lb/>
            quuntur erunt æqualia. </s>
            <s xml:space="preserve">æqualis igitur eſt pyramis a c d k
              <lb/>
            pyramidi b c d _K_. </s>
            <s xml:space="preserve">Rurſus ſi per lineas a d, d e ducatur pla-
              <lb/>
            num quod pyramidem ſecet: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">eius & </s>
            <s xml:space="preserve">baſis communis
              <lb/>
            ſectio a e m: </s>
            <s xml:space="preserve">ſimiliter oſtendetur pyramis a b d K æqualis
              <lb/>
            pyramidi a c d
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">ducto denique alio piano per lineas c a,
              <lb/>
            a f: </s>
            <s xml:space="preserve">ut eius, & </s>
            <s xml:space="preserve">trianguli c d b communis ſectio ſit c fn, py-
              <lb/>
            ramis a b c k pyramidi a c d
              <emph style="sc">K</emph>
            æqualis demonſtrabitur. </s>
            <s xml:space="preserve">cũ
              <lb/>
            ergo tres pyramides b c d _k_, a b d k, a b c k uni, & </s>
            <s xml:space="preserve">eidem py
              <lb/>
            ramidia c d k ſint æquales, omnes inter ſe ſe æquales erũt.
              <lb/>
            </s>
            <s xml:space="preserve">Sed ut pyramis a b c d ad pyramidem a b c k, ita d e axis ad
              <lb/>
            axem k e, ex uigeſima propoſitione huius: </s>
            <s xml:space="preserve">ſunt enim hæ
              <lb/>
            pyramides in eadem baſi, & </s>
            <s xml:space="preserve">axes cum baſibus æquales con
              <lb/>
            tinent angulos, quòd in eadem recta linea conſtituantur. </s>
            <s xml:space="preserve">
              <lb/>
            quare diuidendo, ut tres pyramides a c d k, b c d _K_, a b d _K_
              <lb/>
            ad pyramidem a b c _K_, ita d _k_ ad _K_ e. </s>
            <s xml:space="preserve">conſtat igitur lineam
              <lb/>
            d K ipſius _K_ e triplam eſſe. </s>
            <s xml:space="preserve">ſed & </s>
            <s xml:space="preserve">a k tripla eſt K f: </s>
            <s xml:space="preserve">itemque
              <lb/>
            b K ipſius _K_ g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">c
              <emph style="sc">K</emph>
            ipſius
              <emph style="sc">K</emph>
            l tripla. </s>
            <s xml:space="preserve">quod eodem modo
              <lb/>
            demonſtrabimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0167-01" xlink:href="note-0167-01a" xml:space="preserve">17. huíus</note>
            <handwritten xlink:label="hd-0167-01" xlink:href="hd-0167-01a"/>
            <figure xlink:label="fig-0167-01" xlink:href="fig-0167-01a">
              <image file="0167-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0167-01"/>
            </figure>
            <note position="right" xlink:label="note-0167-02" xlink:href="note-0167-02a" xml:space="preserve">1. ſexti.</note>
            <note position="right" xlink:label="note-0167-03" xlink:href="note-0167-03a" xml:space="preserve">5. duode-
              <lb/>
            cimi.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit pyramis, cuius baſis quadrilaterum a b c d; </s>
            <s xml:space="preserve">axis e f:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuidatur e fin g, ita ut e g ipſius g f ſit tripla. </s>
            <s xml:space="preserve">Dico cen-
              <lb/>
            trum grauitatis pyramidis eſſe punctum g. </s>
            <s xml:space="preserve">ducatur enim
              <lb/>
            linea b d diuidens baſim in duo triangula a b d, b c d: </s>
            <s xml:space="preserve">ex
              <lb/>
            quibus intelligãtur cõſtitui duæ pyramides a b d e, b c d e: </s>
            <s xml:space="preserve">
              <lb/>
            ſitque pyramidis a b d e axis e h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pyramidis b c d e axis
              <lb/>
            e K: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungatur h _K_, quæ per ftranſibit: </s>
            <s xml:space="preserve">eſt enim in ipſa h K
              <lb/>
            centrum grauitatis magnitudinis compoſitæ ex triangulis
              <lb/>
            a b d, b c d, hoc eſt ipſius quadrilateri. </s>
            <s xml:space="preserve">Itaque centrum gra
              <lb/>
            uitatis pyramidis a b d e ſit punctum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pyramidis b c d e
              <lb/>
            ſit m. </s>
            <s xml:space="preserve">ductaigitur l m ipſi h m lineæ æquidiſtabit: </s>
            <s xml:space="preserve">nam el ad
              <lb/>
              <anchor type="note" xlink:label="note-0168-01a" xlink:href="note-0168-01"/>
            </s>
          </p>
        </div>
      </text>
    </echo>