Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb file="0170" n="170" rhead="FED. COMMANDINI"/>
            & </s>
            <s xml:space="preserve">denique punctum h pyramidis a b c d e f grauitatis eſſe
              <lb/>
            centrum, & </s>
            <s xml:space="preserve">ita in aliis.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0168-01" xlink:href="note-0168-01a" xml:space="preserve">2. ſexti.</note>
            <figure xlink:label="fig-0169-01" xlink:href="fig-0169-01a">
              <image file="0169-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0169-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit conus, uel coni portio axem habens b d: </s>
            <s xml:space="preserve">ſecetur que
              <lb/>
            plano per axem, quod ſectionem faciat triangulum a b c:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </s>
            <s xml:space="preserve">
              <lb/>
            Dico punctum e coni, uel coni portionis, grauitatis
              <lb/>
            eſſe centrum. </s>
            <s xml:space="preserve">Sienim fieri poteſt, ſit centrum f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pro-
              <lb/>
            ducatur e f extra figuram in g. </s>
            <s xml:space="preserve">quam uero proportionem
              <lb/>
            habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
              <lb/>
            eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
              <lb/>
            cium, in quo h. </s>
            <s xml:space="preserve">Itaque in circulo, uel ellipſi plane deſcri-
              <lb/>
            batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
              <lb/>
            tur portiones ſint minores ſpacio h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">intelligatur pyra-
              <lb/>
            mis baſim habens rectilineam figuram a K l m c n o p, & </s>
            <s xml:space="preserve">
              <lb/>
            axem b d; </s>
            <s xml:space="preserve">cuius quidem grauitatis centrum erit punctum
              <lb/>
            e, ut iam demonſtrauimus. </s>
            <s xml:space="preserve">Et quoniam portiones ſunt
              <lb/>
            minores ſpacio h, circulus, uel ellipſis ad portiones ma-
              <lb/>
              <anchor type="figure" xlink:label="fig-0170-01a" xlink:href="fig-0170-01"/>
            iorem proportionem habet, quam g e a d e f. </s>
            <s xml:space="preserve">ſed ut circu-
              <lb/>
            lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
              <lb/>
            conus, uel coni portio ad pyramidem, quæ figuram rectili-
              <lb/>
            neam pro baſi habet; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altitudinem æqualem: </s>
            <s xml:space="preserve">etenim ſu-</s>
          </p>
        </div>
      </text>
    </echo>