Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
201
45
202
203
46
204
205
47
206
207
208
209
210
211
212
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(40)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4801
"
xml:space
="
preserve
">
<
pb
o
="
40
"
file
="
0191
"
n
="
191
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
eſſe pun ctum g. </
s
>
<
s
xml:id
="
echoid-s4802
"
xml:space
="
preserve
">Sequitur ergo uticoſahedri centrum gra
<
lb
/>
uitatis fit idem, quodipſius ſphæræ centrum.</
s
>
<
s
xml:id
="
echoid-s4803
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4804
"
xml:space
="
preserve
">Sit dodecahedrum a ſin ſphæra deſignatum, ſitque ſphæ
<
lb
/>
ræ centrum m. </
s
>
<
s
xml:id
="
echoid-s4805
"
xml:space
="
preserve
">Dico m centrum eſſe grauitatis ipſius do-
<
lb
/>
decahedri. </
s
>
<
s
xml:id
="
echoid-s4806
"
xml:space
="
preserve
">Sit enim pentagonum a b c d e una ex duode-
<
lb
/>
cim baſibus ſolidi a f: </
s
>
<
s
xml:id
="
echoid-s4807
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4808
"
xml:space
="
preserve
">iuncta a m producatur ad ſphæræ
<
lb
/>
ſuperficiem. </
s
>
<
s
xml:id
="
echoid-s4809
"
xml:space
="
preserve
">cadetin angulum ipſi a oppoſitum; </
s
>
<
s
xml:id
="
echoid-s4810
"
xml:space
="
preserve
">quod col-
<
lb
/>
ligitur ex decima ſeptima propoſitione tertiidecimilibri
<
lb
/>
elementorum. </
s
>
<
s
xml:id
="
echoid-s4811
"
xml:space
="
preserve
">cadat in f. </
s
>
<
s
xml:id
="
echoid-s4812
"
xml:space
="
preserve
">at ſi ab aliis angulis b c d e per cẽ
<
lb
/>
trum itidem lineæ ducantur ad ſuperficiem ſphæræ in pun
<
lb
/>
cta g h k l; </
s
>
<
s
xml:id
="
echoid-s4813
"
xml:space
="
preserve
">cadent hæ in alios angulos baſis, quæ ipſi a b c d
<
lb
/>
baſi opponitur. </
s
>
<
s
xml:id
="
echoid-s4814
"
xml:space
="
preserve
">tranſeant ergo per pentagona a b c d e,
<
lb
/>
f g h K l plana ſphæram ſecantia, quæ facient ſectiones cir-
<
lb
/>
culos æquales inter ſe ſe poſtea ducantur ex centro ſphæræ
<
lb
/>
m perpen diculares ad pla-
<
lb
/>
<
figure
xlink:label
="
fig-0191-01
"
xlink:href
="
fig-0191-01a
"
number
="
142
">
<
image
file
="
0191-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0191-01
"/>
</
figure
>
na dictorum circulorũ; </
s
>
<
s
xml:id
="
echoid-s4815
"
xml:space
="
preserve
">ad
<
lb
/>
circulum quidem a b c d e
<
lb
/>
perpendicularis m n: </
s
>
<
s
xml:id
="
echoid-s4816
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4817
"
xml:space
="
preserve
">ad
<
lb
/>
circulum f g h K l ipſa m o,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0191-01
"
xlink:href
="
note-0191-01a
"
xml:space
="
preserve
">corol. pri
<
lb
/>
mæ ſphæ
<
lb
/>
ricorum
<
lb
/>
Theod.</
note
>
erunt puncta n o circulorũ
<
lb
/>
centra: </
s
>
<
s
xml:id
="
echoid-s4818
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4819
"
xml:space
="
preserve
">lineæ m n, m o in
<
lb
/>
ter ſe æquales: </
s
>
<
s
xml:id
="
echoid-s4820
"
xml:space
="
preserve
">quòd circu-
<
lb
/>
li æquales ſint. </
s
>
<
s
xml:id
="
echoid-s4821
"
xml:space
="
preserve
">Eodem mo
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0191-02
"
xlink:href
="
note-0191-02a
"
xml:space
="
preserve
">6. primi
<
lb
/>
phærico
<
lb
/>
rum.</
note
>
do, quo ſupra, demonſtrabi
<
lb
/>
mus lineas m n, m o in unã
<
lb
/>
atque eandem lineam con-
<
lb
/>
uenire. </
s
>
<
s
xml:id
="
echoid-s4822
"
xml:space
="
preserve
">ergo cum puncta n o ſint centra circulorum, con-
<
lb
/>
ſtat ex prima huius & </
s
>
<
s
xml:id
="
echoid-s4823
"
xml:space
="
preserve
">pentagonorũ grauitatis eſſe centra:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4824
"
xml:space
="
preserve
">idcircoq; </
s
>
<
s
xml:id
="
echoid-s4825
"
xml:space
="
preserve
">m n, m o pyramidum a b c d e m, ſ g h _K_ l m axes. </
s
>
<
s
xml:id
="
echoid-s4826
"
xml:space
="
preserve
">
<
lb
/>
ponatur a b c d e m pyramidis grauitatis centrum p: </
s
>
<
s
xml:id
="
echoid-s4827
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4828
"
xml:space
="
preserve
">py
<
lb
/>
ramidis f g h
<
emph
style
="
sc
">K</
emph
>
l m ipſum q centrum. </
s
>
<
s
xml:id
="
echoid-s4829
"
xml:space
="
preserve
">erunt p m, m q æqua-
<
lb
/>
les, & </
s
>
<
s
xml:id
="
echoid-s4830
"
xml:space
="
preserve
">punctum m grauitatis centrum magnitudinis, quæ
<
lb
/>
ex ipſis pyramidibus conſtat. </
s
>
<
s
xml:id
="
echoid-s4831
"
xml:space
="
preserve
">eodẽ modo probabitur qua-
<
lb
/>
rumlibet pyramidum, quæ è regione opponuntur, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>