Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
21
5
22
23
6
24
25
7
26
27
8
28
29
9
30
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div8
"
type
="
section
"
level
="
1
"
n
="
8
">
<
pb
file
="
0014
"
n
="
14
"
rhead
="
ARCHIMEDIS
"/>
<
p
>
<
s
xml:id
="
echoid-s105
"
xml:space
="
preserve
">SECETVR ſuperficies aliqua plano per k punctum
<
lb
/>
ducto: </
s
>
<
s
xml:id
="
echoid-s106
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s107
"
xml:space
="
preserve
">ſicſectio ſemper circuli circunferentia, centrum
<
lb
/>
habens punctum k. </
s
>
<
s
xml:id
="
echoid-s108
"
xml:space
="
preserve
">Dico eam ſphæræ ſuperficiem eſſe. </
s
>
<
s
xml:id
="
echoid-s109
"
xml:space
="
preserve
">Si
<
lb
/>
enim non eſt ſphæræ ſuperfi-
<
lb
/>
<
figure
xlink:label
="
fig-0014-01
"
xlink:href
="
fig-0014-01a
"
number
="
4
">
<
image
file
="
0014-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0014-01
"/>
</
figure
>
cies; </
s
>
<
s
xml:id
="
echoid-s110
"
xml:space
="
preserve
">rectæ lineæ, quæ à pun-
<
lb
/>
cto k ad circunferentiam du-
<
lb
/>
cuntur non omnes æquales e-
<
lb
/>
runt. </
s
>
<
s
xml:id
="
echoid-s111
"
xml:space
="
preserve
">Itaque ſint a b puncta
<
lb
/>
in ſuperficie; </
s
>
<
s
xml:id
="
echoid-s112
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s113
"
xml:space
="
preserve
">inæquales li-
<
lb
/>
neæ a k k b: </
s
>
<
s
xml:id
="
echoid-s114
"
xml:space
="
preserve
">per ipſas autem
<
lb
/>
a k k b planum ducatur, quod
<
lb
/>
ſectionem faciat in ſuperficie
<
lb
/>
lineam d a b c. </
s
>
<
s
xml:id
="
echoid-s115
"
xml:space
="
preserve
">ergo d a b c cir
<
lb
/>
culi circunferentia eſt, cuius
<
lb
/>
centrum k; </
s
>
<
s
xml:id
="
echoid-s116
"
xml:space
="
preserve
">quoniam ſuperficies eiuſmodi ponebatur: </
s
>
<
s
xml:id
="
echoid-s117
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s118
"
xml:space
="
preserve
">
<
lb
/>
idcirco æquales inter ſe ſunt a k k b, ſed & </
s
>
<
s
xml:id
="
echoid-s119
"
xml:space
="
preserve
">inæquales; </
s
>
<
s
xml:id
="
echoid-s120
"
xml:space
="
preserve
">quod
<
lb
/>
fieri non poteſt. </
s
>
<
s
xml:id
="
echoid-s121
"
xml:space
="
preserve
">conſtat igitur ſuperficiem eam eſſe ſphæ-
<
lb
/>
ræ ſuperficiem.</
s
>
<
s
xml:id
="
echoid-s122
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div10
"
type
="
section
"
level
="
1
"
n
="
9
">
<
head
xml:id
="
echoid-head12
"
xml:space
="
preserve
">PROPOSITIO II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s123
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Omnis</
emph
>
humidi conſiſtentis, atque manen-
<
lb
/>
tis ſuperficies ſphærica eſt; </
s
>
<
s
xml:id
="
echoid-s124
"
xml:space
="
preserve
">cuius ſphæræ centrũ
<
lb
/>
eſtidem, quod centrum terræ.</
s
>
<
s
xml:id
="
echoid-s125
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s126
"
xml:space
="
preserve
">INTELLIGATVR humidũ conſiſtens, manẽsq;</
s
>
<
s
xml:id
="
echoid-s127
"
xml:space
="
preserve
">:
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s128
"
xml:space
="
preserve
">ſecetur ipſius ſuperficies plano per centrum terræ du-
<
lb
/>
cto. </
s
>
<
s
xml:id
="
echoid-s129
"
xml:space
="
preserve
">ſit autem terræ centrum k: </
s
>
<
s
xml:id
="
echoid-s130
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s131
"
xml:space
="
preserve
">ſuperficieiſectio, linea
<
lb
/>
a b c d. </
s
>
<
s
xml:id
="
echoid-s132
"
xml:space
="
preserve
">Dico lineam a b c d circuli circunferentiam eſſe, cu
<
lb
/>
ius centrum k. </
s
>
<
s
xml:id
="
echoid-s133
"
xml:space
="
preserve
">Si enim non eſt, rectæ lineæ à puncto k ad
<
lb
/>
lineam a b c d ductæ non erunt æquales. </
s
>
<
s
xml:id
="
echoid-s134
"
xml:space
="
preserve
">Sumatur recta li
<
lb
/>
nea quibuſdam quidem à puncto k ad ipſam a b c d ductis
<
lb
/>
maior; </
s
>
<
s
xml:id
="
echoid-s135
"
xml:space
="
preserve
">quibuſdam uero minor; </
s
>
<
s
xml:id
="
echoid-s136
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s137
"
xml:space
="
preserve
">ex centro k, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>