Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
21
5
22
23
6
24
25
7
26
27
8
28
29
9
30
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(16)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div65
"
type
="
section
"
level
="
1
"
n
="
27
">
<
p
>
<
s
xml:id
="
echoid-s902
"
xml:space
="
preserve
">
<
pb
o
="
16
"
file
="
0043
"
n
="
43
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
dratum n o ad quadratum p f. </
s
>
<
s
xml:id
="
echoid-s903
"
xml:space
="
preserve
">quadratum igitur n o ad
<
lb
/>
quadratum p f non maiorem proportionem habet, quàm
<
lb
/>
ad quadratum m o. </
s
>
<
s
xml:id
="
echoid-s904
"
xml:space
="
preserve
">ex quo eſſicitur, ut p f non ſit minor
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0043-01
"
xlink:href
="
note-0043-01a
"
xml:space
="
preserve
">C</
note
>
ipſa o m; </
s
>
<
s
xml:id
="
echoid-s905
"
xml:space
="
preserve
">neque p b ipſa o h. </
s
>
<
s
xml:id
="
echoid-s906
"
xml:space
="
preserve
">quæ ergo ab h ducitur ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0043-02
"
xlink:href
="
note-0043-02a
"
xml:space
="
preserve
">D</
note
>
rectos angulos ipſi n o, coibit cum b p inter p & </
s
>
<
s
xml:id
="
echoid-s907
"
xml:space
="
preserve
">b. </
s
>
<
s
xml:id
="
echoid-s908
"
xml:space
="
preserve
">co-
<
lb
/>
eatin t. </
s
>
<
s
xml:id
="
echoid-s909
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s910
"
xml:space
="
preserve
">quoniam in rectanguli coniſectione p f eſt æqui
<
lb
/>
diſtans diametro n o; </
s
>
<
s
xml:id
="
echoid-s911
"
xml:space
="
preserve
">h t autem ad diametrum perpẽ-
<
lb
/>
dicularis: </
s
>
<
s
xml:id
="
echoid-s912
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s913
"
xml:space
="
preserve
">r h æqualis ei, quæ uſque ad axem: </
s
>
<
s
xml:id
="
echoid-s914
"
xml:space
="
preserve
">conſtat r t
<
lb
/>
productam ſacere angulos rectos cum ipſa k p ω. </
s
>
<
s
xml:id
="
echoid-s915
"
xml:space
="
preserve
">quare
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s916
"
xml:space
="
preserve
">cum is. </
s
>
<
s
xml:id
="
echoid-s917
"
xml:space
="
preserve
">ergo rt perpendicularis eſt ad ſuperſiciem hu
<
lb
/>
midi. </
s
>
<
s
xml:id
="
echoid-s918
"
xml:space
="
preserve
">et ſi per b g puncta ducantur æquidiſtantes ipſirt,
<
lb
/>
ad ſuperſiciem humidi perpendicular es erunt. </
s
>
<
s
xml:id
="
echoid-s919
"
xml:space
="
preserve
">portio igi
<
lb
/>
tur, qnæ eſt extra humidum, deorſum in humidum feretur
<
lb
/>
ſecundum perpendicularem per b ductam; </
s
>
<
s
xml:id
="
echoid-s920
"
xml:space
="
preserve
">quæ uero in-
<
lb
/>
tra humidum ſecundum perpendicularem per g ſurſum
<
lb
/>
feretur: </
s
>
<
s
xml:id
="
echoid-s921
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s922
"
xml:space
="
preserve
">non manebit ſolida portio a p o l, ſedintra hu
<
lb
/>
midum mouebitur, donecutique ipſa n o ſecundum per-
<
lb
/>
pendicularem ſiat.</
s
>
<
s
xml:id
="
echoid-s923
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div67
"
type
="
section
"
level
="
1
"
n
="
28
">
<
head
xml:id
="
echoid-head33
"
xml:space
="
preserve
">COMMENTARIVS.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s924
"
xml:space
="
preserve
">_Quare non maiorem proportionem habet tota portio_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0043-03
"
xlink:href
="
note-0043-03a
"
xml:space
="
preserve
">A</
note
>
_ad eam, quæ eſt extra humidum, quam quadratum n o ad_
<
lb
/>
_quadratum m o]_ cum enim magnitudo portionis in bumidum
<
lb
/>
demerſa ad totam portionem non maiorem proportionem babeat,
<
lb
/>
quàm exceſſus, quo quadratum n o excedit quadratum m o, ad ip-
<
lb
/>
ſum no quadratum: </
s
>
<
s
xml:id
="
echoid-s925
"
xml:space
="
preserve
">conuertendo per uigeſimáſextam quinti ele-
<
lb
/>
mentorum ex traditione Campani, tota portio ad magnitudinem de
<
lb
/>
merſam non minorem proportionem babebit, quàm quadratum n o
<
lb
/>
ad exceſſum, quo ipſum quadratum no excedit quadratum m o. </
s
>
<
s
xml:id
="
echoid-s926
"
xml:space
="
preserve
">In
<
lb
/>
telligatur portio, quæ extra bumidum, magnitudo prima: </
s
>
<
s
xml:id
="
echoid-s927
"
xml:space
="
preserve
">quæ in bu
<
lb
/>
mido demerſa est, ſecunda: </
s
>
<
s
xml:id
="
echoid-s928
"
xml:space
="
preserve
">tertia autem magnitudo ſit quadratum
<
lb
/>
mo: </
s
>
<
s
xml:id
="
echoid-s929
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s930
"
xml:space
="
preserve
">exceſſus, quo quadratum n o excedit quadratum m o ſit
<
lb
/>
quarta. </
s
>
<
s
xml:id
="
echoid-s931
"
xml:space
="
preserve
">ex his igitur magnitudinibus, primæ & </
s
>
<
s
xml:id
="
echoid-s932
"
xml:space
="
preserve
">ſecundæ ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>