Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
21 5
22
23 6
24
25 7
26
27 8
28
29 9
30
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
< >
page |< < (16) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div65" type="section" level="1" n="27">
          <p>
            <s xml:id="echoid-s902" xml:space="preserve">
              <pb o="16" file="0043" n="43" rhead="DE IIS QVAE VEH. IN AQVA."/>
            dratum n o ad quadratum p f. </s>
            <s xml:id="echoid-s903" xml:space="preserve">quadratum igitur n o ad
              <lb/>
            quadratum p f non maiorem proportionem habet, quàm
              <lb/>
            ad quadratum m o. </s>
            <s xml:id="echoid-s904" xml:space="preserve">ex quo eſſicitur, ut p f non ſit minor
              <lb/>
              <note position="right" xlink:label="note-0043-01" xlink:href="note-0043-01a" xml:space="preserve">C</note>
            ipſa o m; </s>
            <s xml:id="echoid-s905" xml:space="preserve">neque p b ipſa o h. </s>
            <s xml:id="echoid-s906" xml:space="preserve">quæ ergo ab h ducitur ad
              <lb/>
              <note position="right" xlink:label="note-0043-02" xlink:href="note-0043-02a" xml:space="preserve">D</note>
            rectos angulos ipſi n o, coibit cum b p inter p & </s>
            <s xml:id="echoid-s907" xml:space="preserve">b. </s>
            <s xml:id="echoid-s908" xml:space="preserve">co-
              <lb/>
            eatin t. </s>
            <s xml:id="echoid-s909" xml:space="preserve">& </s>
            <s xml:id="echoid-s910" xml:space="preserve">quoniam in rectanguli coniſectione p f eſt æqui
              <lb/>
            diſtans diametro n o; </s>
            <s xml:id="echoid-s911" xml:space="preserve">h t autem ad diametrum perpẽ-
              <lb/>
            dicularis: </s>
            <s xml:id="echoid-s912" xml:space="preserve">& </s>
            <s xml:id="echoid-s913" xml:space="preserve">r h æqualis ei, quæ uſque ad axem: </s>
            <s xml:id="echoid-s914" xml:space="preserve">conſtat r t
              <lb/>
            productam ſacere angulos rectos cum ipſa k p ω. </s>
            <s xml:id="echoid-s915" xml:space="preserve">quare
              <lb/>
            & </s>
            <s xml:id="echoid-s916" xml:space="preserve">cum is. </s>
            <s xml:id="echoid-s917" xml:space="preserve">ergo rt perpendicularis eſt ad ſuperſiciem hu
              <lb/>
            midi. </s>
            <s xml:id="echoid-s918" xml:space="preserve">et ſi per b g puncta ducantur æquidiſtantes ipſirt,
              <lb/>
            ad ſuperſiciem humidi perpendicular es erunt. </s>
            <s xml:id="echoid-s919" xml:space="preserve">portio igi
              <lb/>
            tur, qnæ eſt extra humidum, deorſum in humidum feretur
              <lb/>
            ſecundum perpendicularem per b ductam; </s>
            <s xml:id="echoid-s920" xml:space="preserve">quæ uero in-
              <lb/>
            tra humidum ſecundum perpendicularem per g ſurſum
              <lb/>
            feretur: </s>
            <s xml:id="echoid-s921" xml:space="preserve">& </s>
            <s xml:id="echoid-s922" xml:space="preserve">non manebit ſolida portio a p o l, ſedintra hu
              <lb/>
            midum mouebitur, donecutique ipſa n o ſecundum per-
              <lb/>
            pendicularem ſiat.</s>
            <s xml:id="echoid-s923" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div67" type="section" level="1" n="28">
          <head xml:id="echoid-head33" xml:space="preserve">COMMENTARIVS.</head>
          <p style="it">
            <s xml:id="echoid-s924" xml:space="preserve">_Quare non maiorem proportionem habet tota portio_
              <lb/>
              <note position="right" xlink:label="note-0043-03" xlink:href="note-0043-03a" xml:space="preserve">A</note>
            _ad eam, quæ eſt extra humidum, quam quadratum n o ad_
              <lb/>
            _quadratum m o]_ cum enim magnitudo portionis in bumidum
              <lb/>
            demerſa ad totam portionem non maiorem proportionem babeat,
              <lb/>
            quàm exceſſus, quo quadratum n o excedit quadratum m o, ad ip-
              <lb/>
            ſum no quadratum: </s>
            <s xml:id="echoid-s925" xml:space="preserve">conuertendo per uigeſimáſextam quinti ele-
              <lb/>
            mentorum ex traditione Campani, tota portio ad magnitudinem de
              <lb/>
            merſam non minorem proportionem babebit, quàm quadratum n o
              <lb/>
            ad exceſſum, quo ipſum quadratum no excedit quadratum m o. </s>
            <s xml:id="echoid-s926" xml:space="preserve">In
              <lb/>
            telligatur portio, quæ extra bumidum, magnitudo prima: </s>
            <s xml:id="echoid-s927" xml:space="preserve">quæ in bu
              <lb/>
            mido demerſa est, ſecunda: </s>
            <s xml:id="echoid-s928" xml:space="preserve">tertia autem magnitudo ſit quadratum
              <lb/>
            mo: </s>
            <s xml:id="echoid-s929" xml:space="preserve">& </s>
            <s xml:id="echoid-s930" xml:space="preserve">exceſſus, quo quadratum n o excedit quadratum m o ſit
              <lb/>
            quarta. </s>
            <s xml:id="echoid-s931" xml:space="preserve">ex his igitur magnitudinibus, primæ & </s>
            <s xml:id="echoid-s932" xml:space="preserve">ſecundæ ad </s>
          </p>
        </div>
      </text>
    </echo>