Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (11) of 213 > >|
3311DE IIS QVAE VEH. IN AQVA. cundum eam, quæ per g, deorſum ferctur; & non ita mane
bit ſolidum a p o l:
nam quod eſt ad a feretur ſurſum; &
quod ad b deorſum, donec n o ſecundum perpendicu-
larem conſtituatur.
]
COMMENTARIVS.
D_esideratvr_ propoſitionis huius demonstratio, quam nos
etiam ad Archimedis figuram appoſite restituimus, commentarijs-
que illustrauimus.
_Recta portio conoidis rectanguli, quando axem habue_
11A _rit minorem, quàm ſeſquialterum eius, quæ uſque ad axẽ]_
In tranſlatione mendoſe legebatur.
maiorem quàm ſeſquialterum:
& ita legebatur in ſequenti propoſitione. est autem recta portio co
noidis, quæ plano ad axem recto abſcinditur:
eâmque rectam tunc
conſiſtere dicimus, quando planum abſcindens, uidelicet baſis pla-
num, ſuperficiei humidi æquidiſtans fuerit.
Quæ erit ſectionis i p o s diameter, & axis portionis in
22B humido demerſæ] _ex_ 46 _primi conicorum Apollonij:
uel ex co-_
_rollario_ 51 _eiuſdem_.
_Sitque ſolidæ magnitudinis a p o l grauitatis centrum r,_
33C _ipſius uero i p o s centrum ſit b.
]_ Portionis enim conoidis
rectanguli centrum grauitatis eſt in axe, quem ita diuidit, ut pars
eius, quæ ad uerticem terminatur, reliquæ partis, quæ ad baſim, ſit
dupla:
quod nos in libro de centro grauitatis ſolidorum propoſitio-
ne 29 demonstrauimus.
Cum igitur portionis a p o l centrum gra-
uitatis ſit r, erit o r dupla r n:
& propterea n o ipſius o r ſeſqui-
altera.
Eadem ratione b centrum grauitatis portionis i p o s est in
axe p f, ita ut p b dupla ſit b f.
_Etiuncta b r producatur ad g, quod ſit centrum graui_
44D _tatis reliquæ figuræ i s l a]_ Si enim linea b r in g producta, ha
beat g r ad r b proportionem eam, quam conoidis portio i p o s ad
reliquam figuram, quæ ex humidi ſuperficie extat:
erit punctum g
ipſius grauitatis centrum, ex octaua Archimedis.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index