Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
72ARCHIMEDIS quindecim ad quatuor; & ad eam, quæ uſque ad axem maiorem pro
portionem habeat:
erit quæ uſ que ad axem minor ipſa k c.
1110. quinti
Sit ei, quæ uſque ad axem æ qualis k r. ] _Hac nos addidimus,_
22G _quæ in translatione non erant._
_Eſt autem & s b ſeſquialtera ipſius b r. ]_ Ponitur enim
33H d b ſeſquialtera ipſius b k;
itémq; d ſ ſeſquialtera k r. quare ut to
ta d b ad totam b K, ita pars d s ad partem K r.
ergo & reliqua
4419. quinti s b ad reliquim b r, ut d b ad b k.
_Quæ ſimiles ſint portioni a b l. ]_ Similes portiones coni ſe-
55K ctionum Apollonius it.
i diffiniuit in ſexto libro conicorum, ut ſcri-
bit Eutocius, εν οἱς α χ θεισωνἐν ἑηάστω παραλλήλων τῆ βάσει, ἵσωι
τὸ πλῆθος, ὰι παρὰλληλοι, καὶ αἱ βάσ{ει}ς πρὸς τὰςἀποτεμνομένας
ἀπὸ τῶν διαμέ τρων ταῖς νορυφαῖς ἐν τοῖς αὐτοῖ ς λὄγοιςεἰσἰ, καὶἁι
ἀποτεμνόμεναι πρὸς τάς ἀποτεμνομένας;
hoc est. in quibus ſi du-
cantnr lineæ æquidistantes baſi numero æquales:
æquidiſtantes atq;
baſes ad partes diametrorum, quæ ab ipſis ad uerticem abſcindũtur,
eandem proportionem babent:
it émq; partes abſciſſæ ad abſciſſas.
ducuntur autem lineæ baſi æquidistantes:
ut opinor, deſcripta in ſin
gulis plane rectilinea figura, quæ lateribus numero æqualibus conti
66γνωρίμως neatur.
Itaq; portiones ſimiles à ſimilibus coni ſectionibus abſcindũ
tur:
& earum diametri ſiue ad baſes rectæ, ſiue cum baſibus æ qua-
les angulos facientes, ad ipſas baſes eandem habent proportionem.
_Tranſibit igitur a e i coni ſectio per k. ]_ Sienim fieri po
77L teſt non tranſeat per k, ſed per aliud punctum lineæ d b, ut per u.
Quoniam igitur in rectáguli coni ſectione a e i, cuius diameter e z,
ducta eſt a e, &
producta: & d b diametro æquidistans utraſque
a e, a i ſecat;
a e quidem in b, ai uero in d: habebit d b ad b u
proportionem eandem, quam a z, ad z d, ex quarta propoſitione li
bri.
Archimedis de quadratura parabolæ. Sed a z ſeſquialtera eſt
ipſius z d:
eſt enim ut tria ad duo, quod mox demonſtrabimus. ergo
d b ſeſquialtera eſt ipſius b u.
eſt auté d b & ipſius b k ſeſquialte
ra.
quare lineæ b u, b k inter ſe æ quales ſunt; quod fieri non po-
882. quinti. teſt.
restanguli igitur com ſectio a e i per punctum k tranſibit.
quod demonstrare uolebamus.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index