Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb file="0124" n="124" rhead="FED. COMMANDINI"/>
            in linea e b punctũ g, it aut ſit g e æqualis e f. </s>
            <s xml:space="preserve">erit g por-
              <lb/>
            tionis a b c centrum. </s>
            <s xml:space="preserve">nam ſi hæ portiones, quæ æquales
              <lb/>
            & </s>
            <s xml:space="preserve">ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
              <lb/>
            & </s>
            <s xml:space="preserve">punctum b in d cadet, & </s>
            <s xml:space="preserve">g in f: </s>
            <s xml:space="preserve">figuris autem æquali-
              <lb/>
            bus, & </s>
            <s xml:space="preserve">ſimilibus inter ſe aptatis, centra quoque grauitatis
              <lb/>
            ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
              <lb/>
            medis in libro de centro grauitatis planorum. </s>
            <s xml:space="preserve">Quare cum
              <lb/>
            portionis a d c centrum grauitatis ſit ſ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portionis
              <lb/>
            a b c centrum g: </s>
            <s xml:space="preserve">magnitudinis; </s>
            <s xml:space="preserve">quæ ex utriſque efficitur:
              <lb/>
            </s>
            <s xml:space="preserve">hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
              <lb/>
            neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
              <lb/>
            dem libri Archimedis. </s>
            <s xml:space="preserve">ergo circuli, uel ellipſis centrum
              <lb/>
            grauitatis eſt idem, quod figuræ centrum. </s>
            <s xml:space="preserve">atque illud eſt,
              <lb/>
            quod demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0123-02" xlink:href="fig-0123-02a">
              <image file="0123-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0123-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Ex quibus ſequitur portionis circuli, uel ellip-
              <lb/>
            ſis, quæ dimidia maior ſit, centrum grauitatis in
              <lb/>
            diametro quoque ipſius conſiſtere.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <image file="0124-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0124-01"/>
          </figure>
          <p>
            <s xml:space="preserve">Sit enim maior portio a b c, cu_i_us diameter b d, & </s>
            <s xml:space="preserve">com-
              <lb/>
            pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, dia</s>
          </p>
        </div>
      </text>
    </echo>