Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3347
"
xml:space
="
preserve
">
<
pb
file
="
0132
"
n
="
132
"
rhead
="
FED. COMMANDINI
"/>
centrum z: </
s
>
<
s
xml:id
="
echoid-s3348
"
xml:space
="
preserve
">parallelogram mi a d, θ: </
s
>
<
s
xml:id
="
echoid-s3349
"
xml:space
="
preserve
">parallelogrammi f g, φ:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3350
"
xml:space
="
preserve
">parallelogrammi d h, χ: </
s
>
<
s
xml:id
="
echoid-s3351
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3352
"
xml:space
="
preserve
">
<
lb
/>
<
figure
xlink:label
="
fig-0132-01
"
xlink:href
="
fig-0132-01a
"
number
="
88
">
<
image
file
="
0132-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0132-01
"/>
</
figure
>
parallelogrammi c g centrũ
<
lb
/>
ψ: </
s
>
<
s
xml:id
="
echoid-s3353
"
xml:space
="
preserve
">atque erit ω punctum me
<
lb
/>
dium uniuſcuiuſque axis, ui
<
lb
/>
delicet eius lineæ, quæ oppo
<
lb
/>
ſitorum planorũ centra con
<
lb
/>
iungit. </
s
>
<
s
xml:id
="
echoid-s3354
"
xml:space
="
preserve
">Dico ω centrum effe
<
lb
/>
grauitatis ipſius ſolidi. </
s
>
<
s
xml:id
="
echoid-s3355
"
xml:space
="
preserve
">eſt
<
lb
/>
enim, ut demonſtrauimus,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0132-01
"
xlink:href
="
note-0132-01a
"
xml:space
="
preserve
">6. huius</
note
>
ſolidi a f centrum grauitatis
<
lb
/>
in plano K n; </
s
>
<
s
xml:id
="
echoid-s3356
"
xml:space
="
preserve
">quod oppoſi-
<
lb
/>
tis planis a d, g f æ quidiſtans
<
lb
/>
reliquorum planorum late-
<
lb
/>
ra biſariam diuidit: </
s
>
<
s
xml:id
="
echoid-s3357
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3358
"
xml:space
="
preserve
">fimili
<
lb
/>
rationeidem centrum eſt in plano o r, æ quidiſtante planis
<
lb
/>
a e, b f oppo ſitis. </
s
>
<
s
xml:id
="
echoid-s3359
"
xml:space
="
preserve
">ergo in communi ipſorum fectione: </
s
>
<
s
xml:id
="
echoid-s3360
"
xml:space
="
preserve
">ui-
<
lb
/>
delicet in linea y z. </
s
>
<
s
xml:id
="
echoid-s3361
"
xml:space
="
preserve
">Sed eſt etiam in plano t u, quod quidẽ
<
lb
/>
y z ſecat in ω. </
s
>
<
s
xml:id
="
echoid-s3362
"
xml:space
="
preserve
">Conſtat igitur centrum grauitatis ſolidi eſſe
<
lb
/>
punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
<
lb
/>
planorum oppoſitorum centra coniungunt.</
s
>
<
s
xml:id
="
echoid-s3363
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3364
"
xml:space
="
preserve
">Sit aliud prima a f; </
s
>
<
s
xml:id
="
echoid-s3365
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3366
"
xml:space
="
preserve
">in eo plana, quæ opponuntur, tri-
<
lb
/>
angula a b c, d e f: </
s
>
<
s
xml:id
="
echoid-s3367
"
xml:space
="
preserve
">diuiſisq; </
s
>
<
s
xml:id
="
echoid-s3368
"
xml:space
="
preserve
">bifariam parallelogrammorum
<
lb
/>
lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
<
lb
/>
ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
<
lb
/>
triangulum g h k æ quale, & </
s
>
<
s
xml:id
="
echoid-s3369
"
xml:space
="
preserve
">ſimile ipſis a b c, d e f. </
s
>
<
s
xml:id
="
echoid-s3370
"
xml:space
="
preserve
">Rurſus
<
lb
/>
diuidatur a b bifariam in l: </
s
>
<
s
xml:id
="
echoid-s3371
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3372
"
xml:space
="
preserve
">iuncta c l per ipſam, & </
s
>
<
s
xml:id
="
echoid-s3373
"
xml:space
="
preserve
">per
<
lb
/>
c _K_ f planum ducatur priſma ſecans, cuius, & </
s
>
<
s
xml:id
="
echoid-s3374
"
xml:space
="
preserve
">parallelogrã
<
lb
/>
mi a e communis ſcctio ſit l m n. </
s
>
<
s
xml:id
="
echoid-s3375
"
xml:space
="
preserve
">diuidet pun ctum m li-
<
lb
/>
neam g h bifariam; </
s
>
<
s
xml:id
="
echoid-s3376
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3377
"
xml:space
="
preserve
">ita n diuidet lineam d e: </
s
>
<
s
xml:id
="
echoid-s3378
"
xml:space
="
preserve
">quoniam
<
lb
/>
triangula a c l, g k m, d f n æ qualia ſunt, & </
s
>
<
s
xml:id
="
echoid-s3379
"
xml:space
="
preserve
">ſimilia, ut ſu pra
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0132-02
"
xlink:href
="
note-0132-02a
"
xml:space
="
preserve
">5. huius</
note
>
demonſtrauimus. </
s
>
<
s
xml:id
="
echoid-s3380
"
xml:space
="
preserve
">Iam ex iis, quæ tradita ſunt, conſtat cen
<
lb
/>
trum greuitatis priſmatis in plano g h k contineri. </
s
>
<
s
xml:id
="
echoid-s3381
"
xml:space
="
preserve
">Dico
<
lb
/>
ipſum eſſe in linea k m. </
s
>
<
s
xml:id
="
echoid-s3382
"
xml:space
="
preserve
">Si enim fieri poteſt, ſit o centrum;</
s
>
<
s
xml:id
="
echoid-s3383
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>