Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(20)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div84
"
type
="
section
"
level
="
1
"
n
="
34
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1151
"
xml:space
="
preserve
">
<
pb
o
="
20
"
file
="
0051
"
n
="
51
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
pla. </
s
>
<
s
xml:id
="
echoid-s1152
"
xml:space
="
preserve
">ex quo fit ut pr, rh, fg inter ſe ſint æquales; </
s
>
<
s
xml:id
="
echoid-s1153
"
xml:space
="
preserve
">itémq; </
s
>
<
s
xml:id
="
echoid-s1154
"
xml:space
="
preserve
">æquales
<
lb
/>
rg, pf. </
s
>
<
s
xml:id
="
echoid-s1155
"
xml:space
="
preserve
">eſt enim pg utrique r p, gf communis. </
s
>
<
s
xml:id
="
echoid-s1156
"
xml:space
="
preserve
">Quoniam igitur
<
lb
/>
hb ad bg est, ut
<
lb
/>
<
figure
xlink:label
="
fig-0051-01
"
xlink:href
="
fig-0051-01a
"
number
="
31
">
<
image
file
="
0051-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0051-01
"/>
</
figure
>
gb ad bf; </
s
>
<
s
xml:id
="
echoid-s1157
"
xml:space
="
preserve
">per c
<
gap
/>
<
lb
/>
uerſionem ratio-
<
lb
/>
mis erit b h ad
<
lb
/>
h g, ut b g ad gf.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1158
"
xml:space
="
preserve
">eſt autem q h ad
<
lb
/>
h b, ut h o ad gb. </
s
>
<
s
xml:id
="
echoid-s1159
"
xml:space
="
preserve
">
<
lb
/>
nam ex 35 primi
<
lb
/>
libri conicorum,
<
lb
/>
cum linea qm có
<
lb
/>
tingat ſectionem
<
lb
/>
in punctom; </
s
>
<
s
xml:id
="
echoid-s1160
"
xml:space
="
preserve
">erút
<
lb
/>
h b, bq æquales; </
s
>
<
s
xml:id
="
echoid-s1161
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s1162
"
xml:space
="
preserve
">gh ipſius h b
<
lb
/>
dupla. </
s
>
<
s
xml:id
="
echoid-s1163
"
xml:space
="
preserve
">ergo ex æ-
<
lb
/>
quali q h ad hg,
<
lb
/>
ut ho ad g f; </
s
>
<
s
xml:id
="
echoid-s1164
"
xml:space
="
preserve
">hoc
<
lb
/>
eſt ad hr: </
s
>
<
s
xml:id
="
echoid-s1165
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1166
"
xml:space
="
preserve
">per
<
lb
/>
mutando q h ad
<
lb
/>
h o, ut g h ad h r. </
s
>
<
s
xml:id
="
echoid-s1167
"
xml:space
="
preserve
">
<
lb
/>
rurſus per conuerſionem rationis h q ad qo, ut h g ad g r; </
s
>
<
s
xml:id
="
echoid-s1168
"
xml:space
="
preserve
">hoc eſt
<
lb
/>
p f: </
s
>
<
s
xml:id
="
echoid-s1169
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1170
"
xml:space
="
preserve
">propterea ad ipſam cn, quod demonstrandum fuerat.</
s
>
<
s
xml:id
="
echoid-s1171
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1172
"
xml:space
="
preserve
">His igitur explicatis, iam adid, quod propoſitum fue
<
lb
/>
rat, accedamus. </
s
>
<
s
xml:id
="
echoid-s1173
"
xml:space
="
preserve
">Itaque dico primum nc ad c k eandem
<
lb
/>
proportionem babere, quam h g ad g b.</
s
>
<
s
xml:id
="
echoid-s1174
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1175
"
xml:space
="
preserve
">Quoniam enim h q ad qo eſt, ut h g ad c n, hoc eſt ad a o ipſi
<
lb
/>
cn æqualem; </
s
>
<
s
xml:id
="
echoid-s1176
"
xml:space
="
preserve
">erit reliqua gq ad reliquam q a, ut h q ad q o: </
s
>
<
s
xml:id
="
echoid-s1177
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1178
"
xml:space
="
preserve
">
<
lb
/>
ob eam cauſſam lineæ a c g l productæ ex ijs, quæ ſupra demonſtra
<
lb
/>
uimus in linea q m conueniunt. </
s
>
<
s
xml:id
="
echoid-s1179
"
xml:space
="
preserve
">Rurſus gq ad qa eſt, ut h q </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>