Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <pb file="0126" n="126" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">Itaque quoniam duæ lineæ K l, l m ſe ſe tangentes, duabus
              <lb/>
            lineis ſe ſe tangentibus a b, b c æquidiſtant; </s>
            <s xml:space="preserve">nec ſunt in eo-
              <lb/>
            dem plano: </s>
            <s xml:space="preserve">angulus
              <emph style="sc">K</emph>
            l m æqualis eſt angulo a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita an
              <lb/>
              <anchor type="note" xlink:label="note-0126-01a" xlink:href="note-0126-01"/>
            gulus l m
              <emph style="sc">K</emph>
            , angulo b c a, & </s>
            <s xml:space="preserve">m
              <emph style="sc">K</emph>
            lipſi c a b æqualis prob abi
              <lb/>
            tur. </s>
            <s xml:space="preserve">triangulum ergo
              <emph style="sc">K</emph>
            l m eſt æquale, & </s>
            <s xml:space="preserve">ſimile triang ulo
              <lb/>
            a b c. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">triangulo d e f. </s>
            <s xml:space="preserve">Ducatur linea c g o, & </s>
            <s xml:space="preserve">per ip
              <lb/>
            ſam, & </s>
            <s xml:space="preserve">per c f ducatur planum ſecans priſma, cuius & </s>
            <s xml:space="preserve">paral
              <lb/>
            lelogrammi a e communis ſectio ſit o p q. </s>
            <s xml:space="preserve">tranſibit linea
              <lb/>
            f q per h, & </s>
            <s xml:space="preserve">m p per n. </s>
            <s xml:space="preserve">nam cum plana æquidiſtantia ſecen
              <lb/>
            tur à plano c q, communes eorum ſectiones c g o, m p, f q
              <lb/>
            ſibi ipſis æquidiſtabunt. </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">æquidiſtant a b,
              <emph style="sc">K</emph>
            l, d e. </s>
            <s xml:space="preserve">an-
              <lb/>
            guli ergo a o c,
              <emph style="sc">K</emph>
            p m, d q f inter ſe æquales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſunt
              <lb/>
              <anchor type="note" xlink:label="note-0126-02a" xlink:href="note-0126-02"/>
            æquales qui ad puncta a k d conſtituuntur. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">reliqui
              <lb/>
            reliquis æquales; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangula a c o, _K_ m p, d f q inter ſe ſimi
              <lb/>
            lia erunt. </s>
            <s xml:space="preserve">Vtigitur ca ad a o, ita fd ad d q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">permutando
              <lb/>
              <anchor type="note" xlink:label="note-0126-03a" xlink:href="note-0126-03"/>
            ut c a ad fd, ita a o ad d q. </s>
            <s xml:space="preserve">eſt autem c a æqualis fd. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">
              <lb/>
            a o ipſi d q. </s>
            <s xml:space="preserve">eadem quoque ratione & </s>
            <s xml:space="preserve">a o ipſi _K_ p æqualis
              <lb/>
            demonſtrabitur. </s>
            <s xml:space="preserve">Itaque ſi triangula, a b c, d e f æqualia & </s>
            <s xml:space="preserve">
              <lb/>
            ſimilia inter ſe aptétur,
              <lb/>
              <anchor type="figure" xlink:label="fig-0126-01a" xlink:href="fig-0126-01"/>
            cadet linea f q in lineam
              <lb/>
            c g o. </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">centrũ gra
              <lb/>
              <anchor type="note" xlink:label="note-0126-04a" xlink:href="note-0126-04"/>
            uitatis h in g centrũ ca-
              <lb/>
            det. </s>
            <s xml:space="preserve">trãſibit igitur linea
              <lb/>
            f q per h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">planum per
              <lb/>
            c o & </s>
            <s xml:space="preserve">c f ductũ per axẽ
              <lb/>
            g h ducetur: </s>
            <s xml:space="preserve">idcircoq; </s>
            <s xml:space="preserve">li
              <lb/>
            neam m p etiã per n trã
              <lb/>
            ſire neceſſe erit. </s>
            <s xml:space="preserve">Quo-
              <lb/>
            niam ergo ſh, c g æqua-
              <lb/>
            les ſunt, & </s>
            <s xml:space="preserve">æquidiſtãtes:
              <lb/>
            </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">h q, g o; </s>
            <s xml:space="preserve">rectæ li-
              <lb/>
            neæ, quæ ipſas cónectũt
              <lb/>
            c m f, g n h, o p q æqua-
              <lb/>
            les & </s>
            <s xml:space="preserve">æquidiſtãtes erũt.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>