Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3452
"
xml:space
="
preserve
">
<
pb
file
="
0136
"
n
="
136
"
rhead
="
FED. COMMANDINI
"/>
medis. </
s
>
<
s
xml:id
="
echoid-s3453
"
xml:space
="
preserve
">ergo punctum v extra p riſima a f poſitum, centrũ
<
lb
/>
erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
<
lb
/>
r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
<
lb
/>
teſt. </
s
>
<
s
xml:id
="
echoid-s3454
"
xml:space
="
preserve
">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
<
lb
/>
ræ intra ipſam poſitum, non extra. </
s
>
<
s
xml:id
="
echoid-s3455
"
xml:space
="
preserve
">quare relinquitur, ut cẽ
<
lb
/>
trum grauitatis priſmatis ſit in linea K m. </
s
>
<
s
xml:id
="
echoid-s3456
"
xml:space
="
preserve
">Rurſus b c bifa-
<
lb
/>
riam in ξ diuidatur: </
s
>
<
s
xml:id
="
echoid-s3457
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3458
"
xml:space
="
preserve
">ducta a ξ, per ipſam, & </
s
>
<
s
xml:id
="
echoid-s3459
"
xml:space
="
preserve
">per lineam
<
lb
/>
a g d plan um ducatur; </
s
>
<
s
xml:id
="
echoid-s3460
"
xml:space
="
preserve
">quod priſma ſecet: </
s
>
<
s
xml:id
="
echoid-s3461
"
xml:space
="
preserve
">faciatq; </
s
>
<
s
xml:id
="
echoid-s3462
"
xml:space
="
preserve
">in paral
<
lb
/>
lelogrammo b f ſectionem ξ π di uidet punctum π lineam
<
lb
/>
quoque c f bifariam: </
s
>
<
s
xml:id
="
echoid-s3463
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3464
"
xml:space
="
preserve
">erit p lani eius, & </
s
>
<
s
xml:id
="
echoid-s3465
"
xml:space
="
preserve
">trianguli g h K
<
lb
/>
communis ſectio g u; </
s
>
<
s
xml:id
="
echoid-s3466
"
xml:space
="
preserve
">quòd p ũctum u in inedio lineæ h K
<
lb
/>
<
figure
xlink:label
="
fig-0136-01
"
xlink:href
="
fig-0136-01a
"
number
="
91
">
<
image
file
="
0136-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01
"/>
</
figure
>
poſitum ſi t. </
s
>
<
s
xml:id
="
echoid-s3467
"
xml:space
="
preserve
">Similiter demonſtrabimus centrum grauita-
<
lb
/>
tis priſm atis in ipſa g u ineſſe. </
s
>
<
s
xml:id
="
echoid-s3468
"
xml:space
="
preserve
">ſit autem planorum c f n l,
<
lb
/>
a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
<
lb
/>
axis erit, cum tranſeat per centra grauitatis triangulorum
<
lb
/>
a b c, g h k, d e f, ex quartadecima eiuſdem. </
s
>
<
s
xml:id
="
echoid-s3469
"
xml:space
="
preserve
">ergo centrum
<
lb
/>
grauitatis pri ſmatis a f eſt punctum σ, centrum </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>