Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3603" xml:space="preserve">
              <pb file="0142" n="142" rhead="FED. COMMANDINI"/>
              <figure xlink:label="fig-0142-01" xlink:href="fig-0142-01a" number="96">
                <image file="0142-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0142-01"/>
              </figure>
            linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
              <lb/>
            gura rectilinea y. </s>
            <s xml:id="echoid-s3604" xml:space="preserve">ergo pyramis x pyramide y minor erit.
              <lb/>
            </s>
            <s xml:id="echoid-s3605" xml:space="preserve">Sed & </s>
            <s xml:id="echoid-s3606" xml:space="preserve">maior; </s>
            <s xml:id="echoid-s3607" xml:space="preserve">quod fieri nõ poteſt. </s>
            <s xml:id="echoid-s3608" xml:space="preserve">At ſi conus, uel coni por
              <lb/>
            tio x ponatur minor pyramide y: </s>
            <s xml:id="echoid-s3609" xml:space="preserve">ſit alter conus æque al-
              <lb/>
            tus, uel altera coni portio χ ipſi pyramidi y æqualis. </s>
            <s xml:id="echoid-s3610" xml:space="preserve">erit
              <lb/>
            eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
              <lb/>
            quorum exceſſus ſit ſpacium ω. </s>
            <s xml:id="echoid-s3611" xml:space="preserve">Siigitur in circulo, uel elli-
              <lb/>
            pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
              <lb/>
            ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
              <lb/>
            culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </s>
            <s xml:id="echoid-s3612" xml:space="preserve">& </s>
            <s xml:id="echoid-s3613" xml:space="preserve">p_y_ramis in
              <lb/>
            ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
              <lb/>
            nor p_y_ramide_y_. </s>
            <s xml:id="echoid-s3614" xml:space="preserve">eſt ergo ut χ figura rectilinea ad figuram
              <lb/>
            rectilineam _y_, ita pyramis χ ad pyramidem _y_. </s>
            <s xml:id="echoid-s3615" xml:space="preserve">quare cum
              <lb/>
            figura rectilinea χ ſit maior figura_y_: </s>
            <s xml:id="echoid-s3616" xml:space="preserve">erit & </s>
            <s xml:id="echoid-s3617" xml:space="preserve">p_y_ramis χ p_y_-
              <lb/>
            ramide_y_ maior. </s>
            <s xml:id="echoid-s3618" xml:space="preserve">ſed erat minor; </s>
            <s xml:id="echoid-s3619" xml:space="preserve">quod rurſus fieri non po-
              <lb/>
            teſt. </s>
            <s xml:id="echoid-s3620" xml:space="preserve">non eſt igitur conus, uel coni portio x neque maior,
              <lb/>
            neque minor p_y_ramide_y_. </s>
            <s xml:id="echoid-s3621" xml:space="preserve">ergo ipſi neceſſario eſt æqualis. </s>
            <s xml:id="echoid-s3622" xml:space="preserve">
              <lb/>
            Itaque quoniam ut conus ad conum, uel coni portio ad </s>
          </p>
        </div>
      </text>
    </echo>