Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < (46) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <p>
            <s xml:id="echoid-s5082" xml:space="preserve">
              <pb o="46" file="0203" n="203" rhead="DE CENTRO GRAVIT. SOLID."/>
            ro ita demonſtrabitur. </s>
            <s xml:id="echoid-s5083" xml:space="preserve">Ducatur à puncto b ad planum ba-
              <lb/>
            ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
              <lb/>
            </s>
            <s xml:id="echoid-s5084" xml:space="preserve">erit b h altitudo coni, uel coni portionis a b c: </s>
            <s xml:id="echoid-s5085" xml:space="preserve">& </s>
            <s xml:id="echoid-s5086" xml:space="preserve">b K altitu
              <lb/>
              <note position="right" xlink:label="note-0203-01" xlink:href="note-0203-01a" xml:space="preserve">16. unde-
                <lb/>
              cimi.</note>
            do e f g. </s>
            <s xml:id="echoid-s5087" xml:space="preserve">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
              <lb/>
            enim planorum æ quidiſtantium ſectiones: </s>
            <s xml:id="echoid-s5088" xml:space="preserve">habebit d b ad
              <lb/>
              <note position="right" xlink:label="note-0203-02" xlink:href="note-0203-02a" xml:space="preserve">4 ſexti.</note>
            b g proportionem ean dem, quam h b ad b k. </s>
            <s xml:id="echoid-s5089" xml:space="preserve">quare por-
              <lb/>
            tio conoidis a b c ad portionem e f g proportionem habet
              <lb/>
            compoſitam ex proportione baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5090" xml:space="preserve">& </s>
            <s xml:id="echoid-s5091" xml:space="preserve">ex
              <lb/>
            proportione d b axis ad axem b g. </s>
            <s xml:id="echoid-s5092" xml:space="preserve">Sed circulus, uel
              <lb/>
              <note position="right" xlink:label="note-0203-03" xlink:href="note-0203-03a" xml:space="preserve">2. duode
                <lb/>
              cimi</note>
            ellipſis circa diametrum a c ad circulum, uel ellipſim
              <lb/>
              <note position="right" xlink:label="note-0203-04" xlink:href="note-0203-04a" xml:space="preserve">7. de co-
                <lb/>
              noidibus
                <lb/>
              & ſphæ-
                <lb/>
              roidibus</note>
            circa e f, eſt ut quadratum a c ad quadratum e f; </s>
            <s xml:id="echoid-s5093" xml:space="preserve">hoc eſt ut
              <lb/>
            quadratũ a d ad quadratũ e g. </s>
            <s xml:id="echoid-s5094" xml:space="preserve">& </s>
            <s xml:id="echoid-s5095" xml:space="preserve">quadratum a d ad quadra
              <lb/>
            tum e g eſt, ut linea d b ad lineam b g. </s>
            <s xml:id="echoid-s5096" xml:space="preserve">circulus igitur, uel el
              <lb/>
            lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
              <lb/>
              <note position="right" xlink:label="note-0203-05" xlink:href="note-0203-05a" xml:space="preserve">15. quinti</note>
            hoc eſt baſis ad baſim eandem proportionem habet, quã
              <lb/>
              <note position="right" xlink:label="note-0203-06" xlink:href="note-0203-06a" xml:space="preserve">20. primi
                <lb/>
              conicorũ</note>
            d b axis ad axem b g. </s>
            <s xml:id="echoid-s5097" xml:space="preserve">ex quibus ſequitur portionem a b c
              <lb/>
            ad portionem e b f habere proportionem duplam eius,
              <lb/>
            quæ eſt baſis a c ad bafim e f: </s>
            <s xml:id="echoid-s5098" xml:space="preserve">uel axis d b ad b g axem. </s>
            <s xml:id="echoid-s5099" xml:space="preserve">quod
              <lb/>
            demonſtrandum proponebatur.</s>
            <s xml:id="echoid-s5100" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <head xml:id="echoid-head103" xml:space="preserve">THEOREMA XXV. PROPOSITIO XXXI.</head>
          <p>
            <s xml:id="echoid-s5101" xml:space="preserve">Cuiuslibet fruſti à portione rectanguli conoi
              <lb/>
            dis abſcisſi, centrum grauitatis eſt in axe, ita ut
              <lb/>
            demptis primum à quadrato, quod fit ex diame-
              <lb/>
            tro maioris baſis, tertia ipſius parte, & </s>
            <s xml:id="echoid-s5102" xml:space="preserve">duabus
              <lb/>
            tertiis quadrati, quod fit ex diametro baſis mino-
              <lb/>
            ris: </s>
            <s xml:id="echoid-s5103" xml:space="preserve">deinde à tertia parte quadrati maioris baſis
              <lb/>
            rurſus dempta portione, ad quam reliquum qua
              <lb/>
            drati baſis maioris unà cum dicta portione duplã
              <lb/>
            proportionem habeat eius, quæ eſt quadrati </s>
          </p>
        </div>
      </text>
    </echo>